Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is an autosomal recessive inherited form of epilepsy, previously linked to human chromosome 21q22.3. The gene encoding cystatin B was shown to be localized to this region, and levels of messenger RNA encoded by this gene were found to be decreased in cells from affected individuals. Two mutations, a 3' splice site mutation and a stop codon mutation, were identified in the gene encoding cystatin B in EPM1 patients but were not present in unaffected individuals. These results provide evidence that mutations in the gene encoding cystatin B are responsible for the primary defect in patients with EPM1.
Cohen syndrome is an uncommon autosomal recessive disorder whose diagnosis is based on the clinical picture of nonprogressive psychomotor retardation and microcephaly, characteristic facial features, retinal dystrophy, and intermittent neutropenia. We have refined the critical region on chromosome 8q22 by haplotype analysis, and we report the characterization of a novel gene, COH1, that is mutated in patients with Cohen syndrome. The longest transcript (14,093 bp) is widely expressed and is transcribed from 62 exons that span a genomic region of approximately 864 kb. COH1 encodes a putative transmembrane protein of 4,022 amino acids, with a complex domain structure. Homology to the Saccharomyces cerevisiae VPS13 protein suggests a role for COH1 in vesicle-mediated sorting and transport of proteins within the cell.
This article elucidates the clinical picture in Cohen syndrome (MIM 216550), an autosomal recessive disorder that is overrepresented in Finland. The diagnosis is based on the typical clinical picture: nonprogressive psychomotor retardation, motor clumsiness and microcephaly, typical facial features, childhood hypotonia and hyperextensibility of the joints, ophthalmologic findings of retinochoroidal dystrophy and myopia in patients over 5 years of age, and granulocytopenia. In a nationwide study, 29 Finnish patients were investigated. Magnetic resonance images of the brain with quantitative structure analyses revealed a relatively enlarged corpus callosum (CC). The youngest patients had normal EEGs, while all others had low-voltage EEGs. Of the patients, 22% had profound, 61% severe, 6% moderate, and 11% mild retardation. In an adaptive behavior scale (AAMD), patients had high scores in the positive domains (self-direction, responsibility, and socialization), whereas maladaptive behavior was almost lacking. Only the youngest patients had unimpaired visual function. Vision started to deteriorate early but slowly. Progressive myopia and retinochoroidal dystrophy were found in all of the patients over 5 years of age. All of the patients had isolated granulocytopenia. The heart anatomy was normal. However, decreased left ventricular function with advancing age was found. No significant endocrine abnormalities were discovered. Fingers were slender but short, with a typical metacarpophalangeal pattern profile. The manifestations vary at different ages. The Finnish Cohen patients are clinically highly homogeneous, their disease gene being located on chromosome 8. Heterogeneity probably exists among other patients claimed to have Cohen syndrome.
Background:Music perception and performance are comprehensive human cognitive functions and thus provide an excellent model system for studying human behaviour and brain function. However, the molecules involved in mediating music perception and performance are so far uncharacterised.Objective:To unravel the biological background of music perception, using molecular and statistical genetic approaches.Methods: 15 Finnish multigenerational families (with a total of 234 family members) were recruited via a nationwide search. The phenotype of all family members was determined using three tests used in defining musical aptitude: a test for auditory structuring ability (Karma Music test; KMT) commonly used in Finland, and the Seashore pitch and time discrimination subtests (SP and ST respectively) used internationally. We calculated heritabilities and performed a genome-wide variance components-based linkage scan using genotype data for 1113 microsatellite markers.Results:The heritability estimates were 42% for KMT, 57% for SP, 21% for ST and 48% for the combined music test scores. Significant evidence of linkage was obtained on chromosome 4q22 (LOD 3.33) and suggestive evidence of linkage at 8q13-21 (LOD 2.29) with the combined music test scores, using variance component linkage analyses. The major contribution of the 4q22 locus was obtained for the KMT (LOD 2.91). Interestingly, a positive LOD score of 1.69 was shown at 18q, a region previously linked to dyslexia (DYX6) using combined music test scores.Conclusion:Our results show that there is a genetic contribution to musical aptitude that is likely to be regulated by several predisposing genes or variants.
Carney complex (CNC) is a familial multiple neoplasia syndrome characterized by cardiac and extracardiac myxomas in the setting of spotty skin pigmentation and endocrinopathy. We previously identified PRKAR1A (regulatory subunit 1α of protein kinase A) mutations in CNC. Mutational analyses of the PRKAR1A gene in 51 unrelated CNC probands now detect mutations in 65%. All mutations, except for one unique missense mutation, lead to PRKAR1A haploinsufficiency. Therefore, we studied the consequences of prkar1a haploinsufficiency in mice. Although we did not observe cardiac myxomas or altered pigmentation in prkar1a +/– mice, we did observe some phenotypes similar to CNC, including altered heart rate variability. Moreover, prkar1a +/– mice exhibited a marked propensity for extracardiac tumorigenesis. They developed sarcomas and hepatocellular carcinomas. Sarcomas were frequently associated with myxomatous differentiation. Tumors from prkar1a +/– mice did not exhibit prkar1a loss of heterozygosity. Thus, we conclude that although PRKAR1A haploinsufficiency does predispose to tumorigenesis, distinct secondary genetic events are required for tumor formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.