Abstract. Osteoclasts (OCLs) are multinucleated bone resorbing cells whose differentiation is regulated by receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colonystimulating factor (M-CSF). It is known that inflammatory cytokines and oxidative stress stimulate differentiation of OCLs. Here we evaluated the effects of kahweol, a coffee-specific diterpene, which has been reported to possess anti-oxidant and anti-inflammatory properties, on the differentiation of bone marrow-derived macrophages (BMMs) or murine monocytic cell line RAW-D cells into OCLs. Kahweol dose-dependently inhibited the formation of tartrate-resistant acid phosphatase staining-positive OCLs from both BMMs and RAW-D cells. In addition, kahweol prevented the bone resorbing activity of OCLs. Kahweol completely abolished RANKL-stimulated phosphorylation of extracellular signal-regulated kinase and impaired phosphorylation of Akt. Moreover, the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), a master regulator for OCL differentiation; and OCL markers transcriptionally regulated by NFATc1 such as Src and cathepsin K were down-regulated by kahweol treatment. As one of the molecular mechanisms for the inhibitory effects of kahweol, we also showed that kahweol up-regulated heme oxygenase-1 and inhibited high mobility group box 1 release. Thus, kahweol in coffee is a useful constituent for inhibition of OCL differentiation.
Abstract. Osteoclasts (OCLs) are multinucleated bone-resorbing cells that are differentiated by stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor. We recently demonstrated that regulation of heme-oxygenase 1 (HO-1), a stress-induced cytoprotective enzyme, also functions in OCL differentiation. In this study, we investigated effects of fisetin, a natural bioactive flavonoid that has been reported to induce HO-1 expression, on the differentiation of macrophages into OCLs. Fisetin inhibited the formation of OCLs in a dose-dependent manner and suppressed the bone-resorbing activity of OCLs. Moreover, fisetin-treated OCLs showed markedly decreased phosphorylation of extracellular signal-regulated kinase, Akt, and Jun N-terminal kinase, but fisetin did not inhibit p38 phosphorylation. Fisetin up-regulated mRNA expression of phase II antioxidant enzymes including HO-1 and interfered with RANKL-mediated reactive oxygen species (ROS) production. Studies with RNA interference showed that suppression of NF-E2-related factor 2 (Nrf2), a key transcription factor for phase II antioxidant enzymes, rescued fisetin-mediated inhibition of OCL differentiation. Furthermore, fisetin significantly decreased RANKL-induced nuclear translocation of cFos and nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a transcription factor critical for osteoclastogenic gene regulation. Therefore, fisetin inhibits OCL differentiation through blocking RANKLmediated ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.
Osteoclasts (OCLs) are multinucleated bone-resorbing cells that are differentiated by receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Our recent studies have shown that heme-oxygenase-1 (HO-1), a stress-induced cytoprotective enzyme, plays an important role in OCL differentiation, although the pharmacological significance of this effect remains unknown. In this study, we investigated the effects of tert-butylhydroquinone (tBHQ), a pharmacological HO-1 inducer, on in vitro differentiation of bone marrow-derived macrophages (BMMs) or murine monocytic cell line RAW-D into OCLs. tBHQ inhibited the formation and the bone-resorbing activity of OCLs. Moreover, tBHQ treatment decreased the expression of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), a master regulator of OCL differentiation, and of OCL markers transcriptionally regulated by NFATc1, such as Src and cathepsin K. In addition, tBHQ impaired phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), Jun N-terminal kinase, Akt, and inhibitor of nuclear factor kappa B alpha (IκBα). Finally, we show that tBHQ inhibited the release of high mobility group box 1 (HMGB1), a recently identified activator of OCL differentiation. Thus, tBHQ inhibits OCL differentiation through the HO-1/HMGB1 pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.