SUMMARYThis paper proposes a classification method of secondlanguage-learner utterances for interactive computer-assisted language learning systems. This classification method uses three types of bilingual evaluation understudy (BLEU) scores as features for a classifier. The three BLEU scores are calculated in accordance with three subsets of a learner corpus divided according to the quality of utterances. For the purpose of overcoming the data-sparseness problem, this classification method uses the BLEU scores calculated using a mixture of word and part-of-speech (POS)-tag sequences converted from word sequences based on a POSreplacement rule according to which words are replaced with POS tags in n-grams. Experiments of classifying English utterances by Japanese demonstrated that the proposed classification method achieved classification accuracy of 78.2% which was 12.3 points higher than a baseline with one BLEU score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.