Hemispheric asymmetries in human auditory cortical function and structure are still highly debated. Brain stimulation approaches can complement correlational techniques by uncovering causal influences. Previous studies have shown asymmetrical effects of transcranial magnetic stimulation (TMS) on task performance, but it is unclear whether these effects are task-specific or reflect intrinsic network properties. To test how modulation of auditory cortex (AC) influences functional networks and whether this influence is asymmetrical, the present study measured resting-state fMRI connectivity networks in 17 healthy volunteers before and immediately after TMS (continuous theta burst stimulation) to the left or right AC, and the vertex as a control. We also examined the relationship between TMSinduced interhemispheric signal propagation and anatomical properties of callosal auditory fibers as measured with diffusion-weighted MRI. We found that TMS to the right AC, but not the left, resulted in widespread connectivity decreases in auditory-and motor-related networks in the resting state. Individual differences in the degree of change in functional connectivity between auditory cortices after TMS applied over the right AC were negatively related to the volume of callosal auditory fibers. The findings show that TMS-induced network modulation occurs, even in the absence of an explicit task, and that the magnitude of the effect differs across individuals as a function of callosal structure, supporting a role for the corpus callosum in mediating functional asymmetry. The findings support theoretical models emphasizing hemispheric differences in network organization and are of practical significance in showing that brain stimulation studies need to take network-level effects into account.
PurposeTo investigate the 2-year outcomes of three monthly intravitreal ranibizumab injections followed by as-needed reinjections to treat polypoidal choroidal vasculopathy (PCV).MethodsSeventy-five consecutive eyes with naïve symptomatic PCV with 2 years of follow-up after treatment were studied prospectively.ResultsThe mean (±SD) numbers of injections were 4.2±1.3 that included three monthly injections in the loading phase and 1.6±1.7 during years 1 and 2, respectively (mean 2-year total, 5.6±1.9). The baseline logarithm of the minimum angle of resolution visual acuity (VA) was 0.59±0.51 that improved significantly (p=0.001 for both comparisons) to 0.37±0.33 and 0.41±0.40 at 1 and 2 years, respectively, after the first injection. Although no significant difference was found between years 1 and 2 after the first injection, the VA tended to decrease slightly during year 2. The improved foveal thickness was maintained during year 2. Thirty (40%) eyes and 19 (25%) eyes, respectively, at years 1 and 2 after the first injection had no polypoidal lesions on indocyanine green angiography. A branching vascular network (BVN) remained in all eyes 2 years after the first injection and tended to increase in size during year 2.ConclusionsThe 2-year outcomes showed significant VA and foveal thickness improvements in eyes with PCV. During year 2, the magnitude of the improvement was lower compared with year 1. An as-needed reinjection schedule might not prevent polypoidal lesions or BVNs from regrowing. Further investigations should establish a treatment strategy for PCV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.