Abstract— Epidermal cells of Vallisneria gigantea have a large central vacuole which is surrounded by a thin layer of cytoplasm. The chloroplasts are distributed over all six cytoplasmic layers of an approximate cuboid. In low‐intensity light, the accumulation of chloroplasts in the side facing the outer periclinal wall (the P side) continues for several hours. Red light (650 nm) shows the highest effect and induces such an accumulation even at a fluence rate of only 0.02 W/m2. In response to high‐intensity light, the chloroplasts move to the sides that face the anticlinal walls (the A sides) within a few tens of minutes. Blue light (450 nm) is most effective in inducing this movement. At a fluence rate of 1.51 W/m2, the reaction is induced in only half of the specimens. Neither red nor blue light can induce any orientation movement in the presence of 100 μg/ml of cytochalasin B. The chloroplast movements in the P side have been examined with a time‐lapse video system. When cells, in which the chloroplast accumulation has been completed after red‐light irradiation, are subsequently irradiated with blue light, the rapid movement of chloroplasts to A sides is induced. However, a considerable number of chloroplasts remains in the center of the P side. The same is true of cells in which the chloroplasts have not accumulated in the P side because of cytochalasin B treatment during red‐light irradiation, when such cells are irradiated with blue light after removal of the drug. Some anchoring mechanism seems to work in low‐intensity light to render the chloroplasts immobile in the P side.
Platelet factor 4 (PF4) is expressed during megakaryocytic differentiation. We previously reported that GATA-1 and ETS-1 regulate the rat PF4 promoter and transactivate the PF4 gene. For the present study, we investigated the regulatory elements and their transcription factors responsible for the lineage-specific expression of the PF4 gene. The promoter activities of deletion constructs were evaluated, and a novel regulatory element termed TME (tandem repeat of MEIS1 binding element) (؊219 to ؊182) was defined. Binding proteins to TME were strongly detected in HEL nuclear extracts by electrophoresis mobility shift assay (EMSA), and they were purified by DNA affinity chromatography. By performing Western blottings and supershift assays, the binding proteins were identified as homeodomain proteins, MEIS1, PBX1B, and PBX2. These factors are expressed in megakaryocytes differentiated from CD34 ؉ cells in human cord blood. MEIS1 and PBXs bind to the TME as MEIS1/PBX complexes and activate the PF4 promoter. In nonmegakaryocytic HepG2 cells, GATA-1 and ETS-1 activate the PF4 promoter approximately 10-fold. Surprisingly, we found that additional expression of both MEIS1 and PBX2 multiplied this major activation another 2-fold. This activation was not observed when MEIS1 binding sites in the TME were disrupted. Furthermore, inhibition of the binding of endogenous MEIS1/ PBX complexes to the TME decreased the promoter activity by almost one half, in megakaryocytic HEL cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.