Prion-like spreading of abnormal proteins is proposed to occur in neurodegenerative diseases, and the progression of α-synuclein (α-syn) deposits has been reported in the brains of animal models injected with synthetic α-syn fibrils or pathological α-syn prepared from patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, α-syn transmission in nonhuman primates, which are more similar to humans, has not been fully clarified. Here, we injected synthetic human α-syn fibrils into the left striatum of a macaque monkey (Macaca fuscata). At 3 months after the injection, we examined neurodegeneration and α-syn pathology in the brain using α-syn epitope-specific antibodies, antiphosphorylated α-syn antibodies (pSyn#64 and pSer129), antiubiquitin antibodies, and anti-p62 antibodies. Immunohistochemical examination with pSyn#64, pSer129, and α-syn epitope-specific antibodies revealed Lewy bodies, massive α-syn-positive neuronal intracytoplasmic inclusions (NCIs), and neurites in the left putamen. These inclusions were also positive for ubiquitin and p62. LB509, a human-specific α-syn antibody targeting amino acid residues 115-122, showed limited immunoreactivity around the injection site. The left substantia nigra (SN) and the bilateral frontal cortex also contained some NCIs and neurites. The left hemisphere, including parietal/temporal cortex presented sparse α-syn pathology, and no immunoreactivity was seen in olfactory nerves, amygdala, hippocampus, or right parietal/temporal cortex. Neuronal loss and gliosis in regions with α-syn pathology were mild, except for the left striatum and SN. Our results indicate that abnormal α-syn fibrils propagate throughout the brain of M. fuscata via projection, association, and commissural fibers, though the progression of α-syn pathology is limited.
In the male germline, the machinery to repress retrotransposons that threaten genomic integrity via the piRNA pathway is established in gonocytes. It has been reported that disruption of the piRNA pathway leads to activation of retrotransposons and arrests spermatogenesis before it enters the second meiosis; however, its effects on gonocytes have not been fully elucidated. In this study, we analyzed the effects of Asz1 deletion, which is a crucial component of the piRNA pathway, on the gonocyte transcriptome. In Asz1-null gonocytes, MIWI2, which is responsible for introducing DNA methylation to retrotransposons in a piRNA-dependent manner, disappeared from the nuclei of fetal gonocytes. Transcriptome analysis revealed that retrotransposons targeted by the piRNA pathway and non-annotated transcript variants were upregulated in gonocytes from neonatal Asz1 -/mice. These non-annotated transcript variants were chimeras generated by joining exons transcribed from retrotransposons and canonical genes. DNA methylation analysis showed that retrotransposons that induce the expression of aberrant chimeric transcripts are not fully methylated. This was consistent with the impaired nuclear localization of MIWI2 in Asz1-null gonocytes. Furthermore, heterogeneity of DNA methylation status in retrotransposons was observed in both gonocytes and their descendants.This suggests that the piRNA system in gonocytes can potentially prevent spermatogenic cell populations bearing aberrant chimeric transcripts from propagating later in spermatogenesis. In conclusion, Asz1 is required to repress retrotransposons and retrotransposon-driven aberrant chimeric transcripts in gonocytes through the piRNA pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.