For the purpose of nationwide surveillance of antimicrobial susceptibility of bacterial respiratory pathogens from patients in Japan, the Japanese Society of Chemotherapy (JSC) started a survey in 2006. From 2009, JSC continued the survey in collaboration with the Japanese Association for Infectious Diseases and the Japanese Society for Clinical Microbiology. The fourth-year survey was conducted during the period from January and April 2009 by the three societies. A total of 684 strains were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections. Susceptibility testing was evaluable with 635 strains (130 Staphylococcus aureus, 127 Streptococcus pneumoniae, 4 Streptococcus pyogenes, 123 Haemophilus influenzae, 70 Moraxella catarrhalis, 78 Klebsiella pneumoniae, and 103 Pseudomonas aeruginosa). A maximum of 45 antibacterial agents including 26 β-lactams (four penicillins, three penicillins in combination with β-lactamase inhibitors, four oral cephems, eight parenteral cephems, one monobactam, five carbapenems, and one penem), four aminoglycosides, four macrolides (including ketolide), one lincosamide, one tetracycline, two glycopeptides, six fluoroquinolones, and one oxazolidinone were used for the study. Analysis was conducted at the central reference laboratory according to the method recommended by the Clinical and Laboratory Standard Institute (CLSI). Incidence of methicillin-resistant S. aureus (MRSA) was as high as 58.5 %, and that of penicillin-intermediate and penicillin-resistant S. pneumoniae (PISP and PRSP) was 6.3 % and 0.0 %, respectively. Among H. influenzae, 21.1 % of them were found to be β-lactamase-non-producing ampicillin (ABPC)-intermediately resistant (BLNAI), 18.7 % to be β-lactamase-non-producing ABPC-resistant (BLNAR), and 5.7 % to be β-lactamase-producing ABPC-resistant (BLPAR) strains. A high frequency (76.5 %) of β-lactamase-producing strains has been suspected in Moraxella catarrhalis isolates. Four (3.2 %) extended-spectrum β-lactamase-producing K. pneumoniae were found among 126 strains. Four isolates (2.5 %) of P. aeruginosa were found to be metallo-β-lactamase-producing strains, including three (1.9 %) suspected multi-drug resistant strains showing resistance against imipenem, amikacin, and ciprofloxacin. Continuous national surveillance of the antimicrobial susceptibility of respiratory pathogens is crucial to monitor changing patterns of susceptibility and to be able to update treatment recommendations on a regular basis.
The nationwide surveillance on antimicrobial susceptibility of bacterial respiratory pathogens from patients in Japan, was conducted by Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases and Japanese Society for Clinical Microbiology in 2010. The isolates were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections during the period from January and April 2010 by three societies. Antimicrobial susceptibility testing was conducted at the central reference laboratory according to the method recommended by Clinical and Laboratory Standard Institutes using maximum 45 antibacterial agents. Susceptibility testing was evaluable with 954 strains (206 Staphylococcus aureus, 189 Streptococcus pneumoniae, 4 Streptococcus pyogenes, 182 Haemophilus influenzae, 74 Moraxella catarrhalis, 139 Klebsiella pneumoniae and 160 Pseudomonas aeruginosa). Ratio of methicillin-resistant S. aureus was as high as 50.5%, and those of penicillin-intermediate and-resistant S. pneumoniae were 1.1% and 0.0%, respectively. Among H. influenzae, 17.6% of them were found to be b-lactamase-non-producing ampicillin (ABPC)-intermediately resistant, 33.5% to be b-lactamase-non-producing ABPC-resistant and 11.0% to be b-lac-tamase-producing ABPC-resistant strains. Extended spectrum b-lactamase-producing K. pneumoniae and multi-drug resistant P. aeruginosa with metallo b-lactamase were 2.9% and 0.6%, respectively. Continuous national surveillance of antimicrobial susceptibility of respiratory pathogens is crucial in order to monitor changing patterns of susceptibility and to be able to update treatment recommendations on a regular basis.
The aim of this study was to determine the distribution of metallo--lactamase-producing Pseudomonas aeruginosa in Japan and to investigate the molecular characteristics of resistance gene cassettes including the gene encoding this enzyme. A total of 594 nonduplicate strains of P. aeruginosa isolated from 60 hospitals throughout Japan in 2002 were evaluated. This study indicated that although the prevalence of imipenemresistant P. aeruginosa has not increased compared to that found in previous studies, clonal distribution of the same strain across Japan is evident.Class A, B, and D -lactamases, as defined by Ambler et al., can hydrolyze carbapenems (1, 9). In particular, class B -lactamases, termed metallo--lactamases, are an increasingly serious clinical problem because they have a very broad substrate profile that includes penicillins, expanded-spectrum cephalosporins, and carbapenems and excludes only monobactams, such as aztreonam. It has been reported that IMP-1 metallo--lactamase-producing Serratia marcescens was first isolated in Japan in 1991 (10). Recently, metallo--lactamase-producing Pseudomonas aeruginosa and S. marcescens probably have the highest incidence of isolation in Japan (7).Most metallo--lactamase genes are located on integrons, which are genetic elements containing gene cassettes that can facilitate their spread and mobilize the genes to other integrons or to other sites. The gene cassettes often encode clinically important antibiotic resistance genes, including those encoding -lactamases such as extended-spectrum -lactamases and carbapenemases, and also aminoglycoside-modifying enzymes (12).Little is known about the distribution of the clone(s) that produces metallo--lactamases in Japan. Therefore, we conducted a surveillance study covering a wide geographic area with the aim of determining the distribution of metallo--lactamase producers in Japan and to investigate the molecular characteristics of the resistance gene cassettes that included the gene encoding a metallo--lactamase.A total of 594 nonduplicate strains of P. aeruginosa isolated from 60 hospitals throughout Japan in the year 2002 were evaluated. The susceptibility of P. aeruginosa to several antibiotics was measured with the Etest strip, and the strains were stored on Casitone medium (Eiken Chemical Co. Ltd., Tokyo, Japan) (data not shown). After 6 months, the antibiotic susceptibility of these isolates was reassessed by the National Committee for Clinical Laboratory Standards broth microdilution method with cation-adjusted Mueller-Hinton broth (Difco, Detroit, Mich.). The isolates were screened for the presence of metallo--lactamase by a double-disk synergy test reported by Arakawa et al. (2). Integron analysis was performed by PCR mapping (5Ј-conserved segment intI to 3Ј-conserved segment qacE⌬1) of the typical antibiotic resistance genes and integron with specific primer sets ( Table 1). The specificity of the primer sets for bla IMP-1 -like and bla VIM-2 -like gene was confirmed with positive-control strains pr...
For the purpose of a nationwide surveillance of the antimicrobial susceptibility of bacterial respiratory pathogens in patients in Japan, the Japanese Society of Chemotherapy conducted their second year survey, during the period from January to August, 2007. A total of 1178 strains were collected from clinical specimens obtained from adult patients with well-diagnosed respiratory tract infections. Susceptibility testing was evaluable for 1108 strains (226 Staphylococcus aureus, 257 Streptococcus pneumoniae, 6 Streptococcus pyogenes, 206 Haemophilus influenzae, 120 Moraxella catarrhalis, 122 Klebsiella pneumoniae, and 171 Pseudomonas aeruginosa). A total of 44 antibacterial agents, including 26 beta-lactams (four penicillins, three penicillins in combination with beta-lactamase inhibitors, four oral cephems, eight parenteral cephems, one monobactam, five carbapenems, and one penem), three aminoglycosides, four macrolides (including ketolide), one lincosamide, one tetracycline, two glycopeptides, six fluoroquinolones, and one oxazolidinone were used for the study. Analysis was conducted at the central reference laboratory according to the method recommended by the Clinical and Laboratory Standards Institute (CLSI). The incidence of methicillinresistant Staphylococcus aureus (MRSA) was high, at 59.7%, and the incidences of penicillin-intermediateresistant and -resistant Streptococcus pneumoniae (PISP and PRSP) were 30.4% and 5.1%, respectively. Among Haemophilus influenzae strains, 19.9% of them were found to be beta-lactamase-non-producing ampicillin (ABPC)-intermediately-resistant (BLNAI), 29.1% to be beta-lactamasenon-producing ABPC-resistant (BLNAR), and 6.7% to be beta-lactamase-producing ABPC-resistant (BLPAR) strains. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae was not isolated. Two isolates (1.2%) of Pseudomonas aeruginosa were found to be metallo-beta-lactamase-producing strains, including one (0.6%) suspected multidrug-resistant strain showing resistance to imipenem, amikacin, and ciprofloxacin. These data will be a useful reference for future periodic surveillance studies and for investigations to control resistant infections as well. Continued surveillance is required to prevent the further spread of these antimicrobial resistances.
For the purpose of nationwide surveillance of the antimicrobial susceptibility of bacterial respiratory pathogens collected from patients in Japan, the Japanese Society of Chemotherapy conducted a third year of nationwide surveillance during the period from January to April 2008. A total of 1,097 strains were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections. Susceptibility testing was evaluable with 987 strains (189 Staphylococcus aureus, 211 Streptococcus pneumoniae, 6 Streptococcus pyogenes, 187 Haemophilus influenzae, 106 Moraxella catarrhalis, 126 Klebsiella pneumoniae, and 162 Pseudomonas aeruginosa). A total of 44 antibacterial agents, including 26 β-lactams (four penicillins, three penicillins in combination with β-lactamase inhibitors, four oral cephems, eight parenteral cephems, one monobactam, five carbapenems, and one penem), three aminoglycosides, four macrolides (including a ketolide), one lincosamide, one tetracycline, two glycopeptides, six fluoroquinolones, and one oxazolidinone were used for the study. Analysis was conducted at the central reference laboratory according to the method recommended by the Clinical and Laboratory Standard Institute (CLSI). The incidence of methicillin-resistant S. aureus (MRSA) was as high as 59.8%, and those of penicillin-intermediate and penicillin-resistant S. pneumoniae (PISP and PRSP) were 35.5 and 11.8%, respectively. Among H. influenzae, 13.9% of them were found to be β-lactamase-non-producing ampicillin (ABPC)-intermediately resistant (BLNAI), 26.7% to be β-lactamase-non-producing ABPC-resistant (BLNAR), and 5.3% to be β-lactamase-producing ABPC-resistant (BLPAR) strains. A high frequency (76.5%) of β-lactamase-producing strains was suspected in Moraxella catarrhalis isolates. Four (3.2%) extended-spectrum β-lactamase-producing K. pneumoniae were found among 126 strains. Four isolates (2.5%) of P. aeruginosa were found to be metallo β-lactamase-producing strains, including three (1.9%) suspected multidrug-resistant strains showing resistance to imipenem, amikacin, and ciprofloxacin. Continual national surveillance of the antimicrobial susceptibility of respiratory pathogens is crucial in order to monitor changing patterns of susceptibility and to be able to update treatment recommendations on a regular basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.