Deep mutational scanning can provide significant insights into the function of essential genes in bacteria. Here, we developed a high‐throughput method for mutating essential genes of Escherichia coli in their native genetic context. We used Cas9‐mediated recombineering to introduce a library of mutations, created by error‐prone PCR, within a gene fragment on the genome using a single gRNA pre‐validated for high efficiency. Tracking mutation frequency through deep sequencing revealed biases in the position and the number of the introduced mutations. We overcame these biases by increasing the homology arm length and blocking mismatch repair to achieve a mutation efficiency of 85% for non‐essential genes and 55% for essential genes. These experiments also improved our understanding of poorly characterized recombineering process using dsDNA donors with single nucleotide changes. Finally, we applied our technology to target rpoB, the beta subunit of RNA polymerase, to study resistance against rifampicin. In a single experiment, we validate multiple biochemical and clinical observations made in the previous decades and provide insights into resistance compensation with the study of double mutants.
Sequence to activity mapping technologies are rapidly developing, enabling the generation and isolation of mutations conferring novel phenotypes. Here we used the CRISPR EnAbled Trackable genome Engineering (CREATE) technology to investigate the inhibition of the essential ispC gene in its native genomic context in Escherichia coli. We created a full saturation library of 33 sites proximal to the ligand binding pocket and challenged this library with the antimalarial drug fosmidomycin, which targets the ispC gene product, DXR. This selection is especially challenging since it is a relatively weak in E. coli, with multiple naturally occurring pathways for resistance. We identified several previously unreported mutations that confer fosmidomycin resistance, in highly conserved sites that also exist in pathogens including the malaria-inducing Plasmodium falciparum. This approach may have implications for the isolation of resistance-conferring mutations and may affect the design of future generations of fosmidomycin-based drugs.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Drug resistance is a major healthcare challenge, resulting in a continuous need to develop new inhibitors. The development of these inhibitors requires an understanding of the mechanisms of resistance for a critical mass of occurrences. Recent genome editing technologies based on high-throughput DNA synthesis and sequencing may help to predict mutations resulting in resistance by testing large mutagenesis libraries. Here we describe the rationale of this approach, with examples and relevance to drug development and resistance in malaria.
The current standard for investigating tumors is surgical biopsy, which is costly, invasive, and difficult to perform serially. As an adjunct, circulating tumor cells (CTCs)—cells that have broken away from the primary tumor or metastatic sites—can be obtained from a blood draw and offer the potential for obtaining serial genetic information and serving as biomarkers. Here, we detail the potential for melanoma CTCs to serve as biomarkers and discuss a clinically viable methodology for single-cell CTC isolation and analysis that overcomes previous limitations. We explore the use of melanoma CTC biomarkers by isolating and performing single-cell RNA sequencing on CTCs from melanoma patients. We then compared transcriptional profiles of single melanoma CTCs against A375 cells and peripheral blood mononuclear cells to identify unique genes differentially regulated in circulating melanoma tumor cells. The information that can be obtained via analysis of these CTCs has significant potential in disease tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.