The simultaneous effect of flexible wall and multiple stenoses on the flow and mass transfer of blood is investigated through numerical computation and simulations. The solution is obtained using the Marker and Cell technique on an axisymmetric model of Newtonian blood flow. The results compare favorably with physical observations where the pulsatile boundary condition and double stenoses result in a higher pressure drop across the stenoses. The streamlines, the iso-concentration lines, the Sherwood number, and the mass concentration variations along the entire wall segment provide a comprehensive analysis of the mass transport characteristics. The double stenoses and pulsatile inlet conditions increase the number of recirculation regions and effect a higher mass transfer rate at the throat, whereby more mass is expected to accumulate and cause further stenosis.
The prime objective of the current study is to propose a novel mathematical framework under the fractional-order derivative, which describes the complex within-host behavior of SARS-CoV-2 by taking into account the effects of memory and carrier. To do this, we formulate a mathematical model of SARS-CoV-2 under the Caputo fractional-order derivative. We derived the conditions for the existence of equilibria of the model and computed the basic reproduction number R0. We used mathematical analysis to establish the proposed model’s local and global stability results. Some numerical resolutions of our theoretical results are presented. The main result of this study is that as the fractional derivative order increases, the approach of the solution to the equilibrium points becomes faster. It is also observed that the value of R0 increases as the value of β and πv increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.