Summary Avian influenza A viruses rarely infect humans, but if they do and transmit among them, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern due to the appreciable case fatality rate associated with these infections (>25%), potential instances of human-to-human transmission1, and the lack of pre-existing immunity among humans to viruses of this subtype. Here, we therefore characterized two early human A(H7N9) isolates, A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9; hereafter referred to as Anhui/1 and Shanghai/1, respectively). In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011; H7N9; Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/04/2009; H1N1; CA04). Anhui/1, Shanghai/1, and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates (NHPs), Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs upon intranasal inoculation. Most critically, Anhui/1 transmitted via respiratory droplets in one of three pairs of ferrets. Glycan arrays demonstrated that Anhui/1, Shanghai/1, and A/Hangzhou/1/2013 (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was less sensitive than a pandemic 2009 H1N1 virus to neuraminidase inhibitors, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets, and NHPs and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Summary The panzootic caused by A/goose/Guangdong/1/96‐lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human‐to‐human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human‐to‐human transmissibility and impact on human health should such human‐to‐human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.
The incidence of drug-resistant community-acquired urinary tract infections (CA-UTI) continues to increase worldwide. In 1999 to 2000, a single lineage of uropathogenic (UPEC) sequence type 69 (ST69) caused 51% of trimethoprim-sulfamethoxazole-resistant UTI in a Northern California university community. We compared the clonal distributions of UPEC and its impact on antimicrobial resistance prevalence in the same community during two periods separated by 17 years. We analyzed isolates from urine samples from patients with symptoms of UTI who visited a health service between September 2016 and May 2017 and compared them to UPEC isolates collected similarly between October 1999 and March 2000. Isolates were tested for antimicrobial drug susceptibility and genotyped by multilocus sequence typing. In 1999 to 2000, strains belonging to ST95, ST127, ST73, ST69, ST131, and ST10 caused 125 (56%) of 225 UTI cases, while the same STs caused 148 (64%) of 233 UTI cases in 2016 to 2017. The frequencies of ampicillin resistance and ciprofloxacin resistance rose from 24.4% to 41.6% ( < 0.001) and from 0.9% to 5.1% ( < 0.003), respectively. The six STs accounted for 78.6% and 72.7% of these increases, respectively. Prevalence of drug-resistant UTI in this community appears to be largely influenced by a small set of dominant UPEC STs circulating in the same community 17 years apart. Further research to determine the origin and reasons for persistence of these dominant genotypes is necessary to combat antimicrobial-resistant CA-UTI.
Community-acquired urinary tract infection caused by Escherichia coli is one of the most common infectious diseases in the United States, affecting approximately seven million women and costing approximately 11.6 billion dollars annually. In addition, antibiotic resistance among E. coli bacteria causing urinary tract infection continues to increase, which greatly complicates treatment. Identifying sources of uropathogenic E. coli and implementing prevention measures are essential. However, the reservoirs of uropathogenic E. coli have not been well defined. This study demonstrated that poultry sold in retail stores may serve as one possible source of uropathogenic E. coli. This finding adds to a growing body of evidence that suggests that urinary tract infection may be a food-borne disease. More research in this area can lead to the development of preventive strategies to control this common and costly infectious disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.