Novel and highly soluble hybrid conjugated organic oligomers consisting of oligodiacetylene and thiophene units have been synthesized in high purity through iterative and divergent approaches based on a sequence of Sonogashira reactions. The series of thiophene-containing oligodiacetylenes (ThODAs) and homocoupled ThODAs (HThODAs) show--both in solution and in the solid state--a strong optical absorption, which is progressively red shifted with increasing chain length. The linear correlation of the absorption maximum (lambda(A)(max)) with the inverse of conjugation length (CL = number of double and triple bonds) shows that the effective conjugation length of this system is extended up to at least CL = 20. Furthermore, absorption measurements of dropcast thin films display not only a bathochromic shift of the absorption maxima but also a higher wavelength absorption, which is attributed to increased pi-pi interactions. The wavelength of the maximum fluorescence emission (lambda(E)(max)) also increases with CL, and emission is maximal for oligomers with CL=7-12 (fluorescence quantum yield Phi(F) = approximately 0.2). Both longer and shorter oligomers display marginal emission. The calculated Stokes shifts of these planar materials are relatively large (0.4 eV) for all oligomers, and likely due to excitation to the S(2) state, thus suggesting that the presence of enyne moieties dominates the ordering of the lowest excited states. The fluorescence lifetimes (tau(F)) are short (tau(F,max) =<<1 ns) and closely follow the tendency obtained for the fluorescence quantum yield. The anisotropy lifetimes show a near-linear increase with CL, in line with highly rigid oligomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.