The soil-structure interaction (SSI) is generally neglected for seismic design of ordinary buildings. A modeling technique is proposed to facilitate the integration of SSI in building design, considering rocking effects and the shallow foundation deformability. The proposed technique is suitable when the soil can be considered as horizontally layered. The one-directional three-component wave propagation is numerically simulated in a T-shaped horizontally layered soil domain assembled with a three-dimensional (3D) frame structure. A 3D soil model is used until a fixed depth and a 1D model is supposed to be a sufficient approximation in deeper soil layers. The 1DT-3C wave propagation approach is inspired by the consideration that SSI is detected in the near-surface soil layers. The proposed modeling approach is verified by comparison with a fully 3D model for vertical propagation in horizontally layered soil and periodic lateral boundary condition. The 1DT-3C wave propagation modeling technique is used to investigate the building response and SSI effects that vary with the frequency content of seismic loading and building-to-soil frequency ratio, respectively.
The one-directional three-component wave propagation in a T-shaped soil domain (1DT-3C) is a numerical modeling technique, in a finite element scheme, to investigate dynamic soil-structure interaction (SSI) coupled with seismic site effects, under the assumption of vertical propagation of three-component seismic motion along a horizontal multilayered soil. A three-dimensional elasto-plastic model is adopted for soils, characterized using their shear modulus reduction curve.In this research, the 1DT-3C wave propagation modeling technique is proposed as an efficient tool for bridge design to take into account directly the spatial variability of seismic loading. This approach, in the preliminary phase of bridge study and design, allows the reduction of the soil domain and the easier definition of boundary conditions, using geotechnical parameters obtained with only one borehole investigation for each pier. This leads to a gain in modeling and computational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.