Mixtures containing a polar component and an alkane show a transitional behaviour between non‐associated and associated mixtures. The excess enthalpy and the excess Gibbs energy can be described by the quasichemical approximation with a temperature dependent interchange parameter. The excess entropy is given by SE = SconfE + SINTE. The first term is due to the non‐randomness of the mixture. The second term is correlated to HE. Using this correlation GE, HE and TSE can be roughly predicted. — Excess enthalpies and vapor pressure data were measured in order to supplement excess property data.
In this article, we present a detailed analysis of the dynamic properties of entangled solutions of semi-flexible, threadlike surfactant micelles. These aggregates were formed by self-association processes in aqueous solutions of cationic surfactants such as cetylpyridinium chloride (CPyCl) or cetyltrimethylammonium bromide (CTAB) after the addition of different amounts of sodium salicylate (NaSal). We performed dynamic light scattering (DLS) experiments in combination with rheological measurements in order to investigate the dynamic properties of these viscoelastic surfactant solutions. In all samples, we observed three distinct relaxation regimes: initial monoexponential decay, followed by a power-law behavior at intermediate observation times. A second monoexponential region was detected at very long times, and this terminal regime described the viscoelastic features of the samples. The fast decay mode was induced by local cooperative motions in the gellike network. The intermediate and slowest decay modes point to the existence of quasi-anomalous diffusion processes. These phenomena are characterized by linear-diffusion properties at long times, and they obeyed anomalous logarithmic slow-dynamics behavior at intermediate time zones. The anomalous diffusion properties at intermediate time scales can be induced by the bending motions of the rod-shaped micelles between two entanglement points. This regime, which was more extended at lower temperatures, was described by the power-law form of the correlation function. The power-law exponent depended on the chemical structure of the surfactants and the temperature. The power-law regime shifted toward earlier times as the gellike network evolved. The slowest mode of the correlation function coincided very well with the shear stress relaxation times of the three-dimensional, transient networks. We observed that the temperature dependence of the slowest mode followed Arrhenius laws. This result provides experimental evidence for thermally activated topological relaxation processes of random fluid phases. We obtained activation energies of approximately 30 kcal/mol, and these data coincided well with previously reported literature values, which were determined in similar surfactant solutions. Characteristic "screening lengths", over which viscous effects became important, could also be determined from the activation energy. The elastic modulus G0, calculated from the slowest mode of the correlation function, was in pretty good agreement with rheological data. The light-scattering spectra were consistent with the theoretical model of dynamical coupling of the concentration fluctuations to viscoelasticity. Since only minute sample volumes are required for advanced DLS experiments, this method to extract viscoelasticity is well suited for advanced studies of gellike biomaterials.
In a series of experiments, we investigated the non-linear rheological properties of aqueous solutions of entangled wormlike micelles (WLMs) in steady-state shear flow and in large amplitude oscillating shear (LAOS) experiments. On grounds of their monoexponential stress relaxation properties, we studied semi-dilute solutions of the cationic surfactants cetylpyridinium chloride (CPyCl) or cetyltrimethylammonium bromide (CTAB) after addition of different amounts of sodium salicylate. The rheological data of these networks of WLMs were systematically compared with the numerically calculated results of the one-mode Giesekus constitutive equation. It turned out that the viscous resistance and the first normal stress difference, measured in steady-state shear flow, start-up, and relaxation experiments, were accurately predicted by the one-mode Giesekus model. In rheological tests, where we applied large oscillating shear amplitudes (LAOS), the transient shear stress could also approximately be described by means of the Giesekus model. The non-linear oscillating first normal stress difference, however, showed large deviations in respect to the theoretical predictions. These discrepancies between different rheological experiments, which we observed in oscillating and stationary flow, pointed to the existence of flow instabilities, which occurred in the LAOS regime. These, more complicated rheological processes, were induced by shear-banding and/or the presence of flow-induced phase transitions, which can occur in oscillatory and stationary shear. The non-linear phenomena, discussed in this article, are of general importance, and they can be equally observed in entangled solutions of flexible macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.