Wavelength division multiplexing (WDM) is a promising solution for upgrading the capacity of polymer optical fiber (POF)-based telecommunication networks. In this letter, we report on the successful realization of a four-channel highspeed WDM transmission system for 1-mm diameter step-index POF (SI-POF). For combining the optical signals coming from 405-, 450-, 515-, and 639-nm laser diodes onto 1-mm SI-POF, a 4 × 1 coupler with low insertion loss (IL) has been developed. To spatially separate different wavelength channels, a fourchannel demultiplexer with low IL (<5.7 dB) and high (non)adjacent channel isolation (>30 dB) has been realized in bulk optics. The 14.77-Gb/s data transmission based on the offline-processed discrete multitone modulation technique has been demonstrated over 50-m SI-POF at a bit-error rate of 10 −3 .Index Terms-Demultiplexer, optical interconnections, optical fiber communication, polymer optical fiber, visible diode lasers, wavelength division multiplexing.
Alumina layers were grown from trimethylaluminum (TMA) and water, ozone as well as an oxygen plasma as co-reactants in low temperature spatial atomic layer deposition (ALD). The influence of the amount of precursor, the precursor exposure duration, and substrate temperature were investigated with respect to the growth rate while employing different oxygen sources. The TMA/water process provided alumina (AlOx) films with superb film quality as shown by infrared measurements. Ozone-based processes allowed lower substrate temperatures. Nevertheless, carbon residuals in different binding states were found within the bulk material. However, the carbon impurities have no impact on the barrier performance, since 50 nm AlOx grown by TMA either with water or ozone exhibited a water vapor transition rate in the range of 10−6 g/m2/day. However, when our home-built microwave plasma source was applied in a remote configuration, the water vapor transition rate was one order of magnitude higher due to a reduction in film quality. Furthermore, a TMA utilization of ∼50% demonstrated the highly cost-effective spatial ALD concept as a deposition technique which is very suitable for industrial deposition applications.
Waveguides made of poly-methyl-methacrylate (PMMA) play a major role in the homogeneous distribution of display backlights as a matrix for solid-state dye lasers and polymer optical fibers (POFs). PMMA is favored because of its transparency in the visible spectrum, low price, and well-controlled processability. Nevertheless, technical drawbacks, such as its limited temperature stability, call for new materials. In this work, the copolymerization technique is used to modify the properties of the corresponding homopolymers. The analytical investigation of fourteen copolymers made of methyl-methacrylate (MMA) or ethyl-methacrylate (EMA) as the basis monomer is summarized. Their polymerization behaviors are examined by NMR spectroscopy with subsequent copolymerization parameter evaluation according to Fineman-Ross and Kelen-Tüdös. Therefore, some r-parameter sets are shown to be capable of copolymerizations with very high conversions. The first applications as high-temperature resistant (HT) materials for HT-POFs are presented. Copolymers containing isobornyl-methacrylate (IBMA) as the comonomer are well-suited for this demanding application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.