Derailed cytokine and immune cell networks account for organ damage and clinical severity of COVID-19 [1][2][3][4] . Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and accompanied by a senescence-associated secretory phenotype (SASP), composed of pro-inflammatory cytokines, extracellular matrix-active factors and pro-coagulatory mediators [5][6][7] . COVID-19 patients displayed markers of senescence in their airway mucosa in situ and elevated serum levels of SASP factors. Mirroring COVID-19 hallmark features such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue 1,8,9 , in vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, neutrophil extracellular trap (NET) formation as well as activation of platelets and the clotting cascade in response to supernatant of VIS cells, including SARS-CoV-2-induced senescence. Senolytics such as Navitoclax and Dasatinib/Quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-driven hamster and mouse models. Our findings mark VIS as pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest senolytic targeting of virus-infected cells as a novel treatment option against SARS-CoV-2 and perhaps other viral infections.The pandemic human pathogenic SARS-CoV-2 coronavirus causes upper respiratory infections and subsequently COVID-19 lung disease that may get further complicated by septic multi-organ failure and comes with significant mortality 10,11 . Escalating immune activation with massive cytokine release seems to drive severe COVID-19 1-3 , possibly more than the virus infection itself. Mechanisms of viral
In Austria, registration of malignant brain tumours is legally mandatory, whereas benign and borderline tumours are not reported. The Austrian Brain Tumour Registry (ABTR) was initiated under the auspices of the Austrian Society of Neuropathology for the registration of malignant and non-malignant brain tumours. All Austrian neuropathology units involved in brain tumour diagnostics contribute data on primary brain tumours. Non-microscopically verified cases are added by the Austrian National Cancer Registry to ensure a population-based dataset. In 2005, we registered a total of 1,688 newly diagnosed primary brain tumours in a population of 8.2 million inhabitants with an overall age-adjusted incidence rate of 18.1/100,000 person-years. Non-malignant cases constituted 866 cases (51.3%). The incidence rate was higher in females (18.6/100,000) as compared to males (17.8/100,000), while 95/1,688 (5.6%) cases were diagnosed in children (<18 years). The most common histology was meningioma (n = 504, 29.9%) followed by glioblastoma (n = 340, 20.1%) and pituitary adenoma (n = 151, 8.9%). Comparison with the Central Brain Tumor Registry of the United States (CBTRUS) database showed high congruency of findings. The ABTR model led by neuropathologists in collaboration with epidemiologists and the Austrian National Cancer Registry presents a cooperative way to establish a population-based brain tumour registry with high quality data. This setting links cancer registration to the mission of medical practice and research as defined by the World Medical Association in the Declaration of Helsinki. The continued operation of ABTR will aid in monitoring changes in incidence and in identifying regional disease clusters or geographic variations in brain tumour morbidity/mortality.
Pityriasis rubra pilaris is an inflammatory dermatologic disorder of unknown cause and often confounded with psoriasis. It is characterised by hyperkeratotic follicular papules, scaly erythematous plaques, palmoplantar keratoderma, and a progression to generalised erythroderma. Here, we report the case of a 68-year-old man with pityriasis rubra pilaris, who was successfully treated with ixekizumab, an interleukin-17A inhibitor.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.