The perioperative administration of systemic small-dose lidocaine reduces pain during surgery associated with the development of pronounced central hyperalgesia, presumably by affecting mechanoinsensitive nociceptors, because these have been linked to the induction of central sensitization and were shown to be particularly sensitive to small-dose lidocaine.
Opioid-induced postinfusion hyperalgesia could be abolished by S-ketamine, suggesting an N-methyl-d-aspartate-receptor mechanism. In contrast, elevated pain ratings after infusion were not reduced by ketamine but were alleviated by the alpha(2)-receptor agonist clonidine. The results of this study suggest different mechanisms of opioid-induced postinfusion antianalgesia and secondary hyperalgesia.
Environmentally caused changes in chromosomes that do not alter the DNA sequence but cause phenotypic changes by altering gene transcription are summarized as epigenetics. A major epigenetic mechanism is methylation or demethylation at CpG-rich DNA islands. DNA methylation triggered by drugs has largely unexplored therapeutic consequences. Here we report increased methylation at a CpG rich island in the OPRM1 gene coding for μ-opioid receptors and at a global methylation site (LINE-1) in leukocytes of methadone-substituted former opiate addicts compared with matched healthy controls. Higher DNA methylation associated with chronic opioid exposure was reproduced in an independent cohort of opioid-treated as compared to non-opioid-treated pain patients. This suggests that opioids may stimulate DNA methylation. The OPRM1 methylation had no immediate effect on μ-opioid receptor transcription and was not associated with opioid dosing requirements. However, the global DNA methylation at LINE-1 was significantly correlated with increased chronic pain. This suggests inhibitory effects on the transcription of still unspecified nocifensive gene products. It further implies that opioids may be causally associated with increased genome-wide DNA methylation, although currently there is no direct evidence of this. This has phenotypic consequences for pain and may provide a new, epigenetics-associated mechanism of opioid-induced hyperalgesia. The results indicate a potential influence of opioid analgesics on the patients' epigenome. They emphasize the need for reliable and cost-effective screening tools and may imply that high-throughput screening for lead compounds in artificial expression systems may not provide the best tools for identifying new pain medications.
Different mechanisms were proposed for opioid-induced analgesia and antihyperalgesia, which might result in different pharmacodynamics. To address this issue, the time course of analgesic and antihyperalgesic effects of intravenous (i.v.) and sublingual (s.l.) buprenorphine was assessed in an experimental human pain model. Fifteen volunteers were enrolled in this randomized, double-blind, and placebo controlled cross-over study. The magnitude of pain and the area of secondary hyperalgesia following transcutaneous stimulation were repetitively assessed before and up to 150 min after administration of (1) 0.15 mg buprenorphine i.v. and placebo pill s.l., (2) 0.2 mg buprenorphine s.l. and saline 0.9% i.v. or (3) saline 0.9% i.v. and placebo pill s.l. as a control. The sessions were separated by 2 week wash-out periods. For both applications of buprenorphine the antihyperalgesic effects were more pronounced as compared to the analgesic effects (66+/-9 vs. 26+/-5% and 43+/-10 vs. 10+/-6%, for i.v. and s.l. application, respectively). This contrasts the pattern for the intravenous administration of pure mu-receptor agonists in the same model in which the antihyperalgesic effects are weaker. The apparent bioavailability of buprenorphine s.l. as compared to buprenorphine i.v. was 58% with a 15.8 min later onset of antinociceptive effects. The half-life of buprenorphine-induced analgesic and antihyperalgesic effects were 171 and 288 min, respectively. In contrast to pure mu-receptor agonists, buprenorphine exerts a lasting antihyperalgesic effect in our model. It will be of major clinical interest whether this difference will translate into improved treatment of pain states dominated by central sensitization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.