Birds are bipedal animals with a center of gravity rostral to the insertion of the hindlimbs. This imposes special demands on keeping balance when moving on the ground. Recently, specializations in the lumbosacral region have been suggested to function as a sense organ of equilibrium which is involved in the control of walking. Morphological, electrophysiological, behavioral and embryological evidence for such a function is reviewed. Birds have two nearly independent kinds of locomotion and it is suggested that two different sense organs play an important role in their respective control: the vestibular organ during flight and the lumbosacral system during walking.
In anaesthetized rats, single fibres have been dissected from the tail nerves. Fibres were found which became excited when the temperature of water surrounding the tail was raised above 40 degrees C. Firing rate increased with stepwise increases in temperature, showing first a transient outburst followed by adaptation to a static level. Corresponding neurones were also found in the dorsal horn at the entry zone of the roots coming from the tail. The cord neurones had a higher threshold temperature of 42.5--45 degrees C. When the spinal cord was reversibly blocked by cooling in the thoracic region, then the threshold of the dorsal horn neurones was reduced to that of the afferent fibres. In addition, at suprathreshold temperatures dorsal horn activity was greater during cord blockade. We conclude that dorsal horn neurones responding to noxious heating are subject to a tonic descending inhibitory control.
Many birds show a rhythmic forward and backward movement of their heads when they walk on the ground. This so-called "head-bobbing" is characterized by a rapid forward movement (thrust phase) which is followed by a phase where the head keeps its position with regard to the environment but moves backward with regard to the body (hold phase). These head movements are synchronized with the leg movements. The functional interpretations of head-bobbing are reviewed. Furthermore, it is discussed why some birds do bob their head and others do not.
The occipital cortex of the naturally blind mole rat, Spalax ehrenbergi, is occupied by an area of somatosensory representation. To date, no visual cortex has been identified electrophysiologically. In order to determine whether there are corresponding modifications in the thalamus, thalamocortical connections were studied with neuroanatomical tracing methods. Three different fluorescent tracers were injected under electrophysiological control into distinct cortical areas. Injections into the somatosensory head/face and hindlimb/trunk areas of representation revealed a posteromedial ventral nucleus and a posterolateral ventral nucleus, respectively. Additional somatotopic labeling was found in an area dorsomedial to the two ventral nuclei. This structure may be equivalent to the posterior nuclear complex in the laboratory rat. Injections into the auditory cortex of the mole rat resulted in labeling of the medial geniculate body. In contrast to the situation in the laboratory rat, in which a prominent dorsolateral geniculate body and a ventrolateral geniculate body assume dorsolateral positions, the somatosensory thalamus of the mole rat almost reaches the dorsolateral surface. This finding is corroborated by the results of the architectonic study, which failed to reveal a differentiated lateral geniculate body. Our observations suggest that the thalamocortical visual system in the mole rat is minute, whereas the somatosensory system is expanded. This situation fits the mode of life of this subterranean animal, for which touch is more important than vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.