General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Topology optimization methods improve the structural performance of components. However, in food processing, medical, high-precision, and other industries' designs should also fulfil the requirement of being cleanable. An important aspect of cleanability is drainability, which entails that fluids can always run off the structure under just gravity. Therefore, taking drainability into account during the optimization process is essential for many applications. This paper proposes a drainage filter that turns a blueprint design into a drainable design. In a layer-by-layer fashion, the design is adjusted, to ensure fluids can always run down its surface. A smooth minimum and maximum are used in the formulation to allow for consistent sensitivity calculation. To allow for the small runoff angles, typical for practical drainability, a grid refinement is proposed. Moreover, any drainage direction can be considered. The effectiveness of the method is illustrated in 2D and 3D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.