Positron lifetime spectroscopy was used to study native vacancy defects in semi-insulating silicon carbide. The material is shown to contain ͑i͒ vacancy clusters consisting of four to five missing atoms and ͑ii͒ Sivacancy-related negatively charged defects. The total open volume bound to the clusters anticorrelates with the electrical resistivity in both as-grown and annealed materials. Our results suggest that Si-vacancy-related complexes electrically compensate the as-grown material, but migrate to increase the size of the clusters during annealing, leading to loss of resistivity.
We present results of a thermal anneal process that increases the minority carrier lifetime in SiC substrates to in excess of 3μs, compared to the starting as-grown substrates with lifetimes typically in the <10ns range. Measurement of lifetimes was conducted using microwave-photoconductive decay. Electron beam induced current measurements exhibited minority carrier diffusion lengths of up to 65μm, confirming the enhanced carrier lifetime of the annealed substrate material. Additionally, positron annihilation spectroscopy and deep level transient spectroscopic (DLTS) analysis of samples subjected to this anneal process indicated that a significant reduction of deep level defects, particularly Z1∕Z2, may account for the significantly enhanced lifetimes. The enhanced lifetime is coincident with a transformation of the original as-grown crystal into a strained or disordered lattice configuration as a result of the high temperature anneal process. The operational performance of p-i-n diodes employing drift layers fabricated from the annealed high-lifetime substrates confirmed conductivity modulation in the diodes consistent with ambipolar carrier lifetimes in the microsecond range.
A prototype of a digital positron lifetime apparatus is presented. We demonstrate that direct digitizing of detector pulses and subsequent simple analysis with software, can be used to replace the conventional analog electronics chain (constant-fraction discriminators, time-to-amplitude converter and multichannel analyzer). In this work, we use a fast digital oscilloscope. The quality of the lifetime data is shown to be as good as with a usual apparatus. For a pulsed positron lifetime beam the digital system is particularly suitable as no coincidence detection is needed and only one analog pulse has to be analyzed. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.