Financially profitable greenhouses are fully automated. The producer defines the monitoring limits for the ideal growth environment and then, the system controls automatically each adjustment to keep indoor climate at the optimal level. Increasing greenhouse sizes have forced the producers to use several measurement points for tracking the changes in the environment, thus enabling energy saving and more accurate adjustments. When each measurement point needs its own wire, the costs and cabling work increase exponentially. Once the measurement spot has been built, it is tedious to be relocated. Wireless sensor networks are gained ground in various industries. Agriculture and especially microclimate monitoring and controlling have many promising targets where the benefits of wireless devices can be exploited. In this M.Sc. thesis we discuss the wireless sensor networks applications for greenhouses monitoring. Moreover, we have built the system practically and assist the applicability of such wireless networks through real-side measurements. Star topology network measured temperature, humidity and irradiance -important developmental factors of the plants in Martens greenhouse research foundation. Test setup greenhouse was divided into vertical blocks and nodes monitor one block at a time. The idea of the vertical distribution was to gather information about the differences occurs in the climate between lower and upper flora. The measurement results proved the functionality and reliability of the wireless sensor network inside the dense and high moisture greenhouse.
Many operations, be they military, police, rescue, or other field operations, require localization services and online situation awareness to make them effective. Questions such as how many people are inside a building and their locations are essential. In this paper, an online localization and situation awareness system is presented, called Mobile Urban Situation Awareness System (MUSAS), for gathering and maintaining localization information, to form a common operational picture. The MUSAS provides multiple localization services, as well as visualization of other sensor data, in a common frame of reference. The information and common operational picture of the system is conveyed to all parties involved in the operation, the field team, and people in the command post. In this paper, a general system architecture for enabling localization based situation awareness is designed and the MUSAS system solution is presented. The developed subsystem components and forming of the common operational picture are summarized, and the future potential of the system for various scenarios is discussed. In the demonstration, the MUSAS is deployed to an unknown building, in an ad hoc fashion, to provide situation awareness in an urban indoor military operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.