We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.
Coffee leaf rust is caused by Hemileia vastatrix Berk. and Broome and is the most important coffee disease in all regions where coffee is cultivated. Here, we sought to sequence the transcriptome of H. vastatrix race XXXIII to obtain a database for use as a reference in studies of the interaction between the fungus and coffee. In addition, we aimed to identify differentially expressed genes that have the potential to act as effector proteins during the interaction. Sequencing of cDNA libraries from uredospores and from compatible and incompatible interactions at different key time points generated about 162 million trimmed reads. We identified 3523 differentially expressed genes. The results suggested that the fungal transcriptome is dynamically altered over the course of infection and that the interaction with a susceptible plant upregulates a larger set of fungal genes than the interaction with a resistant plant. Co-expression network analysis allowed us to identify candidate genes with the same expression pattern as that of other effectors of H. vastatrix. Quantitative PCR analysis identified seven transcripts that may be effectors involved in the coffee–H. vastatrix interaction. This information provides a basis for obtaining new insights into the molecular mechanisms of infection in this pathosystem. Understanding gene expression during the infection process may contribute to elucidating the molecular mechanisms leading to the breakdown of resistance by new physiological races of the fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.