The variations in the chemical composition, and consequently, on the biological activity of the propolis, are associated with its type and geographic origin. Considering this fact, this study evaluated propolis extracts obtained by supercritical extraction (SCO2) and ethanolic extraction (EtOH), in eight samples of different types of propolis (red, green and brown), collected from different regions in Brazil. The content of phenolic compounds, flavonoids, in vitro antioxidant activity (DPPH and ABTS), Artepillin C, p-coumaric acid and antimicrobial activity against two bacteria were determined for all extracts. For the EtOH extracts, the anti-proliferative activity regarding the cell lines of B16F10, were also evaluated. Amongst the samples evaluated, the red propolis from the Brazilian Northeast (states of Sergipe and Alagoas) showed the higher biological potential, as well as the larger content of antioxidant compounds. The best results were shown for the extracts obtained through the conventional extraction method (EtOH). However, the highest concentrations of Artepillin C and p-coumaric acid were identified in the extracts from SCO2, indicating a higher selectivity for the extraction of these compounds. It was verified that the composition and biological activity of the Brazilian propolis vary significantly, depending on the type of sample and geographical area of collection.
Propolis is known for its biological properties and its preparations have been continuously investigated in an attempt to solve the problem of their standardization, an issue that limits the use of propolis in food and pharmaceutical industries. The aim of this study was to evaluate in vitro antioxidant, antimicrobial, antiparasitic, and cytotoxic effects of extracts of red, green, and brown propolis from different regions of Brazil, obtained by ethanolic and supercritical extraction methods. We found that propolis extracts obtained by both these methods showed concentration-dependent antioxidant activity. The extracts obtained by ethanolic extraction showed higher antioxidant activity than that shown by the extracts obtained by supercritical extraction. Ethanolic extracts of red propolis exhibited up to 98% of the maximum antioxidant activity at the highest extract concentration. Red propolis extracts obtained by ethanolic and supercritical methods showed the highest levels of antimicrobial activity against several bacteria. Most extracts demonstrated antimicrobial activity against Staphylococcus aureus. None of the extracts analyzed showed activity against Escherichia coli or Candida albicans. An inhibitory effect of all tested ethanolic extracts on the growth of Trypanosoma cruzi Y strain epimastigotes was observed in the first 24 h. However, after 96 h, a persistent inhibitory effect was detected only for red propolis samples. Only ethanolic extracts of red propolis samples R01Et.B2 and R02Et.B2 showed a cytotoxic effect against all four cancer cell lines tested (HL-60, HCT-116, OVCAR-8, and SF-295), indicating that red propolis extracts have great cytotoxic potential. The biological effects of ethanolic extracts of red propolis revealed in the present study suggest that red propolis can be a potential alternative therapeutic treatment against Chagas disease and some types of cancer, although high activity of red propolis in vitro needs to be confirmed by future in vivo investigations.
The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition.
The aim of this study was to develop edible coatings containing natural additives incorporated to the matrix of cassava starch, for use in muffins, as well as to evaluate the efficacy of its use in the increase of shelf life and maintenance of the products characteristics. Seventeen film forming formulations were developed following a central composite experimental design (CCD). The influence of independent variables (soluble coffee, cocoa powder and propolis extract) was determined on the sensorial (colour, taste, texture and dissolution) and physical-chemical parameters (water activity, humidity, hardness, chewiness, cohesiveness and elasticity) of the muffins with edible active coatings. Two new formulations were selected for the study of microbiological and physical-chemical stability during the storage. In the sensorial evaluation, it was verified that the variables studied exerted a significant effect (p<0.05) for colour, taste and solubility of the coated product. Regarding the texture, none of the variables showed a significant effect (p>0.05). For colour, the concentrations of soluble coffee and cocoa powder were significantly influenced (p<0.05) both by the tasters and by instrument (L*, a*, and b*). In the shelf life test, the active coating containing soluble coffee (0.76%), cocoa powder (0.22%) and propolis extract (0.82%) increased the shelf life of the muffins in up to six times, when compared with the control. The result was approximately 87 days shelf life in normal storage conditions (25°C). It was evidenced that the additives tested have an antimicrobial action, associated to the preservation of the other stability properties of the product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.