Aerobic organisms possess efficient systems for the transport of copper. This involves transporters that mediate the passage of copper across biological membranes to reach essential intracellular copper-requiring enzymes. In this report, we identify a new copper transporter in Schizosaccharomyces pombe, encoded by the ctr6 ؉ gene. The transcription of ctr6 ؉ is induced under copper-limiting conditions. This regulation is mediated by the cis-acting promoter element CuSE (copper-signaling element) through the copper-sensing transcription factor Cuf1. An S. pombe strain bearing a disrupted ctr6⌬ allele displays a strong reduction of copper,zinc superoxide dismutase activity. When the ctr6؉ gene is overexpressed from the thiamine-inducible nmt1 ؉ promoter, the cells are unable to grow on medium containing exogenous copper. Surprisingly, this copper-sensitive growth phenotype is not due to an increase of copper uptake at the cell surface. Instead, copper delivery across the plasma membrane is reduced. Consistently, this results in repressing ctr4 ؉ gene expression. By using a functional ctr6 ؉ epitope-tagged allele expressed under the control of its own promoter, we localize the Ctr6 protein on the membrane of vacuoles. Furthermore, we demonstrate that Ctr6 is an integral membrane protein that can trimerize. Moreover, we show that Ctr6 harbors a putative copper-binding Met-X-His-Cys-X-Met-X-Met motif in the amino terminus, which is essential for its function. Our findings suggest that under conditions in which copper is scarce, Ctr6 is required as a means to mobilize stored copper from the vacuole to the cytosol.
BackgroundGastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared.MethodsMonomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting.ResultsNOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers.ConclusionBoth 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding.
Abstract-Synthetic methods to obtain selectively sulfonated metallo phthalocyanines are compared. Both condensation and direct sulfonation procedures lead to mixtures of mono-to tetrasulfonated products which are resolved by reverse phase liquid chromatography in buffered aqueous-methanol. The proportion of sulfonated derivatives is examined as a function of the starting reagents in the case of the condensation method. and as a function of the temperature and reaction time in the case of the direct sulfonation procedure. The number of sulfonate groups per phthalocyanine molecule is determined by oxidative degradation of the phthalocyanine ring followed by quantitative chromatographic analysis of the sulfophthalamide and phthalamide fragments.
To identify optimal features of metalated sulfophthalocyanine dyes for their use as photosensitizers in the photodynamic therapy of cancer, we synthesized a series of alkynyl-substituted trisulfonated phthalocyanines and compared their amphiphilic properties to a number of parameters related to their photodynamic potency. Varying the length of the substituted alkynyl side-chain modulates the hydrophobic/hydrophilic properties of the dyes providing a linear relationship between their n-octanol/water partition coefficients and retention times on reversed-phase HPLC. Aggregate formation of the dyes in aqueous solution increased with increasing hydrophobicity while monomer formation was favored by the addition of serum proteins or organic solvent. Trisulfonated zinc phthalocyanines bearing hexynyl and nonynyl substituents exhibited high cellular uptake with strong localization at the mitochondrial membranes, which coincided with effective photocytotoxicity toward EMT-6 murine mammary tumor cells. Further increase in the length of the alkynyl chains (dodecynyl, hexadecynyl) did not improve their phototoxicity, likely resulting from extensive aggregation of the dyes in aqueous medium and reduced cell uptake. Aggregation was evident from shifts in the electronic spectra and reduced capacity to generate singlet oxygen. When monomerized through the addition of Cremophor EL all sulfonated zinc phthalocyanines gave similar singlet oxygen yields. Accordingly, differences in the tendency of the dyes to aggregate do not appear to be a determining factor in their photodynamic potency. Our results confirm that the latter in particular relates to their amphiphilic properties, which facilitate cell uptake and intracellular localization at photosensitive sites such as the mitochondria. Combined, these factors play a significant role in the overall photodynamic potency of the dyes.
Abstract— Sulfonated phthalocyanine and a series of its metal chelates in combination with red light irradiation led to the degradation of L‐tryptophan in oxygenated aqueous solution. The photoproducts and the rate of transformation of L‐tryptophan are compared with hematoporphyrin and rose bengal sensitized photooxidation. In all cases the primary photoproducts are characterized as cis and trans‐3a‐hydroperoxy‐l,2,3,3a,8,8a‐hexahydropyrrolo[2,3‐b]indole‐2‐carboxylic acid. Support for the involvement of singlet excited oxygen is obtained from azide inhibition and the formation of the specific singlet oxygen product with cholesterol. We observed the contribution of another pathway in the case of the manganese complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.