Here we report an instantaneous formation of high surface area metal nanosponges through a one-step inexpensive method in a completely green solvent, water. Merely by optimizing the concentration of the precursors and the reducing agent, we were able to generate a three-dimensional porous structure made up of nanowire networks. This is a general process, involves a simple, room temperature reduction of metal salts with sodium borohydride, and is therefore scalable to any amount. Further, these nanoporous metals because of their network structures show optical limiting behavior of a true broadband nature that would find applications in optoelectronic nanodevices.
Nanostructured ZnO is a promising material for optoelectronic and nonlinear optical applications because of the flexibility of band gap engineering by means of various defect states present in it. Employing the time-correlated single photon counting photoluminescence technique, the correlation between defect levels and optoelectronic and nonlinear optical properties of ZnO is explored in this work. By a facile solution method, ZnO nanocones with a dominating preferential orientation along energetically less favorable, oxygen terminated (10̄11) facets were synthesized using a passivating capping agent. Photoluminescence spectra demonstrate that the as-grown samples have both oxygen and zinc vacancies, and after calcination in air oxygen vacancies vanish, but zinc vacancies are enhanced. Photoconductivity of the samples reduces significantly upon calcination, confirming the reduction in oxygen vacancies. However, the samples exhibit a significant enhancement in the nonlinear optical absorption coefficient upon calcination, indicating that the effective two-photon absorption causing the nonlinear optical behaviour originates from zinc vacancies. These results illustrate the vast possibilities of band gap engineering in intrinsic ZnO for future optoelectronic applications.
We present the mechanism and performance of optical limiting (OL) in hydrogen exfoliated graphene (HEG), functionalized HEG (f-HEG) and its metal hybrids. At the wavelengths used, the mechanism of nonlinear absorption (NLA) involves two-photon absorption and excited state absorption in the nanosecond excitation regime, and saturable absorption in combination with two-photon absorption in the femtosecond (ultrafast) excitation regime. The role of defects in the OL performance of HEG and f-HEG is investigated with the help of their Raman spectra. OL efficiency of f-HEG is found to improve with Pt and Pd nanoparticle decoration due to an enhanced NLA, which arises mainly from interband transitions between the d band and the s-p conduction band in the metal NPs, and charge transfer between f-HEG and metal NPs. Thermally induced light scattering is negligible in these water dispersed systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.