Echocardiographic particle image velocimetry is feasible. It clearly distinguishes flow patterns in healthy hearts from those in hearts with different types of prosthetic valves. Echocardiographic particle image velocimetry offers new insights into cardiac function and might be of importance to optimize valve replacement therapy.
Meta-analysis of observational studies indicates a trend for improvement over the last decades in which the life expectancy of SSc patients approaches that of the general population. A decreasing tendency in the survival differences between the limited and diffuse SSc subgroups was also verified. Internal organ involvements have similarly unfavourable predictive impact on survival.
AimsTo validate Echo Particle Image Velocimetry (PIV)MethodsHigh fidelity string and rotating phantoms moving with different speed patterns were imaged with different high-end ultrasound systems at varying insonation angles and frame rates. Images were analyzed for velocity and direction and for complex motion patterns of blood flow with dedicated software. Post-processing was done with MATLAB-based tools (Dflow, JUV, University Leuven).ResultsVelocity estimation was accurate up to a velocity of 42 cm/s (r = 0.99, p < 0.001, mean difference 0.4 ± 2 cm/s). Maximally detectable velocity, however, was strongly dependent on frame rate and insonation angle and reached 42 cm/s under optimal conditions. At higher velocities estimates became random. Direction estimates did depend less on velocity and were accurate in 80-90%. In-plane motion patterns were correctly identified with three ultrasound systems.ConclusionEcho-PIV appears feasible. Velocity estimates are accurate, but the maximal detectable velocity depends strongly on acquisition parameters. Direction estimation works sufficiently, even at higher velocities. Echo-PIV appears to be a promising technical approach to investigate flow patterns by echocardiography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.