Hepatic organic anion transporting polypeptides—OATP1B1,
OATP1B3, and OATP2B1—are expressed at the basolateral membrane
of hepatocytes, being responsible for the uptake of a wide range of
natural substrates and structurally unrelated pharmaceuticals. Impaired
function of hepatic OATPs has been linked to clinically relevant drug–drug
interactions leading to altered pharmacokinetics of administered drugs.
Therefore, understanding the commonalities and differences across
the three transporters represents useful knowledge to guide the drug
discovery process at an early stage. Unfortunately, such efforts remain
challenging because of the lack of experimentally resolved protein
structures for any member of the OATP family. In this study, we established
a rigorous computational protocol to generate and validate structural
models for hepatic OATPs. The multistep procedure is based on the
systematic exploration of available protein structures with shared
protein folding using normal-mode analysis, the calculation of multiple
template backbones from elastic network models, the utilization of
multiple template conformations to generate OATP structural models
with various degrees of conformational flexibility, and the prioritization
of models on the basis of enrichment docking. We employed the resulting
OATP models of OATP1B1, OATP1B3, and OATP2B1 to elucidate binding
modes of steroid analogs in the three transporters. Steroid conjugates
have been recognized as endogenous substrates of these transporters.
Thus, investigating this data set delivers insights into mechanisms
of substrate recognition. In silico predictions were complemented
with in vitro studies measuring the bioactivity of a compound set
on OATP expressing cell lines. Important structural determinants conferring
shared and distinct binding patterns of steroid analogs in the three
transporters have been identified. Overall, this comparative study
provides novel insights into hepatic OATP-ligand interactions and
selectivity. Furthermore, the integrative computational workflow for
structure-based modeling can be leveraged for other pharmaceutical
targets of interest.
New aza-BODIPY derivatives as potential photosensitizers were synthesized. The bis-triazolyl-TEG derivative (14) showed superior phototoxicity against the A431 cell line with an excellent photo-to-dark toxicity ratio acting in the nanomolar range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.