Our successful work for the synthesis of cyclopropanated vinblastine and its derivatives by the Simmons–Smith reaction was followed to build up further three-membered rings into the 14,15-position of the vindoline part of the dimer alkaloid. Halogenated 14,15-cyclopropanovindoline was prepared by reactions with iodoform and bromoform, respectively, in the presence of diethylzinc. Reactions of dichlorocarbene with vindoline resulted in the 10-formyl derivative. Unexpectedly, in the case of the dimer alkaloids vinblastine and vincristine, the rearranged products containing an oxirane ring in the catharanthine part were isolated from the reactions. The attempted epoxidation of vindoline and catharanthine also led to anomalous rearranged products. In the epoxidation reaction of vindoline, an o-quinonoid derivative was obtained, in the course of the epoxidation of catharanthine, a hydroxyindolenine type product and a spiro derivative formed by ring contraction reaction, were isolated. The coupling reaction of vindoline and the spiro derivative obtained in the epoxidation of catharanthine did not result in a bisindole alkaloid. Instead, two surprising vindoline trimers were discovered and characterized by NMR spectroscopy and mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.