PurposeThe prognosis of patients with pancreatic cancer remains poor, even after potentially curative R0 resection. This discrepancy may be due to the histopathological misclassification of R1 cases as curative resections (R0) in the past.Materials and methodsTo test this hypothesis, color coding of all resection margins and organ surfaces as part of a standardized histopathological workup was implemented and prospectively tested on 100 pancreatic head specimens.ResultsThirty-five patients were excluded from the analysis owing to the pathohistological diagnosis; only pancreatic ductal adenocarcinoma, distal bile duct adenocarcinoma, and periampullary adenocarcinoma were included. Applying the International Union Against Cancer criteria, 32 cancer resections were classified R0 (49.2%), while 33 cases turned out to be R1 resections (50.8%). The mesopancreas was infiltrated in 22 of the 33 R1 resection specimens (66.6%). It proved to be the only site of tumor infiltration in 17 specimens (51.5%). Applying the Royal College of Pathologists’ criteria, 46 resections were classified R1 (70.8%). As expected, the mesopancreas again was the most frequent site of noncurative resection (n = 27; 58.7%).ConclusionUsing the intensified histopathological workup for pancreatic head cancer specimens resulted in an increased rate of R1 resections and the mesopancreas represents the primary site for positive resection margins. Such results are of relevance for patients’ stratification in clinical trials.
Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.
Penetration probabilities of inhaled man-made mineral fibers to reach central human airways were computed by a stochastic lung deposition model for different flow rates and equivalent diameters. Results indicate that even thick and long fibers can penetrate into the central airways at low flow rates. Deposition efficiencies and localized deposition patterns were then computed for man-made fibers with variable lengths in a three-dimensional physiologically realistic bifurcation model of the central human airways by computational fluid dynamics (CFD) techniques for characteristic breathing patterns. The results obtained for inspiratory flow conditions indicate that deposition efficiencies were highest for parallel orientation of the fibers, increasing with rising flow rate, branching angle, and fiber length at all orientations. Furthermore, deposition patterns were highly inhomogeneous and their localized distributions showed hot spots in the vicinity of the carinal ridge and at the inner sides of the daughter airways. Comparisons with other theoretical results demonstrate that the equivalent diameter concept, if including interception, presents a reasonable approximation for the parameter ranges employed in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.