Light is crucial environmental factor for primary resource and signalling in plants and provide optimum fitness under fluctuating environments from millions of year. However, due to urbanization, and human development activities lot of excess light generated in environment during night time and responsible for anthropogenic generated pollution (ALAN; artificial night light pollution). This pollution has cause for serious problem in plants as it affects their processes and functions which are under the control of light or diurnal cycle. Plant biorhythms mostly diurnal rhythms such as stomatal movements, photosynthetic activity, and many more metabolic processes are under the control of period of light and dark, which are crucially affected by artificial light at night. Similarly, the crucial plant processes such as pollination, flowering, and yield determining processes are controlled by the diurnal cycle and ALAN affects these processes and ultimately hampers the plant fitness and development. To keep in mind the effect of artificial light at night on plant biorhythm and eco-physiological processes, this chapter will focus on the status of global artificial night light pollution and the responsible factors. Further, we will explore the details mechanisms of plant biorhythm and eco-physiological processes under artificial light at night and how this mechanism can be a global threat. Then at the end we will focus on the ANLP reducing strategies such as new light policy, advanced lightening technology such as remote sensing and lightening utilisation optimisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.