Vitamin K-dependent plasma protein, human Protein C (HPC) has been expressed in transgenic mice, using a 4.2 kb mouse whey acidic protein (WAP) promoter, 9.0 kb HPC gene and 0.4 kb 3' flanking sequences. Expression was mammary gland-specific and the recombinant human Protein C (rHPC) was detected in milk at concentrations of 0.1 to 0.7 mg ml-1. SDS-PAGE revealed that the single, heavy and light chains of rHPC migrated with increased electrophoretic mobility, as compared to HPC. Enzymatic deglycosylation showed that these molecular weight disparities are in part due to differential glycosylation. The substantial increase observed in the amount of single chain protein, as well as the presence of the propeptide attached to 20-30% of rHPC, suggest that mouse mammary epithelial cells are not capable of efficient proteolytic processing of rHPC. The Km of purified rHPC for the S-2366 synthetic substrate was similar to that of plasma-derived HPC, while the specific activity was about 42-77%. Amino acid sequence analyses and low anticoagulant activity of purified rHPC suggest that gamma-carboxylation of rHPC is insufficient. These results show that proteolytic processing and gamma-carboxylation can be limiting events in the overexpression of fully biologically active rHPC in the mouse mammary gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.