Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.
Cloud Computing is a well-established paradigm for building service-centric systems. However, ultra-low latency, high bandwidth, security, and real-time analytics are limitations in Cloud Computing when analysing and providing results for a large amount of data. Fog and Edge Computing offer solutions to the limitations of Cloud Computing. The number of agricultural domain applications that use the combination of Cloud, Fog, and Edge is increasing in the last few decades. This article aims to provide a systematic literature review of current works that have been done in Cloud, Fog, and Edge Computing applications in the smart agriculture domain between 2015 and up-to-date. The key objective of this review is to identify all relevant research on new computing paradigms with smart agriculture and propose a new architecture model with the combinations of Cloud–Fog–Edge. Furthermore, it also analyses and examines the agricultural application domains, research approaches, and the application of used combinations. Moreover, this survey discusses the components used in the architecture models and briefly explores the communication protocols used to interact from one layer to another. Finally, the challenges of smart agriculture and future research directions are briefly pointed out in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.