Glucose oxidase (GOX) or lactate oxidase (LOX) were immobilized in an osmium-based three-dimensional redox hydrogel that electrically connected the enzyme's redox centers to electrodes. The enzyme "wiring" hydrogel was formed by cross-linking poly(1-vinylimidazole) (PVI) complexed with Os-(4,4'-dimethylbpy)2Cl (termed PVI15-dmeOs) with poly(ethylene glycol) diglycidyl ether (peg). Glucose and lactate sensors exhibited typical limiting current densities of 250 and 500 microA/cm2, respectively. When the electrodes were poised at 200 mV (SCE), the currents resulting from electrooxidation of ascorbate, urate, acetaminophen, and L-cysteine were negligible. When a Nafion film was employed, the linear range was extended from 6 to 30 mM glucose and from 4 to 7 mM lactate. The redox potential of the gel-forming polymer was 95 mV (SCE). Glucose and lactate measurements performed in bovine calf serum correlated well with a substrate calibration in phosphate buffer.
Enzyme electrodes based on a redox hydrogel formed upon complexing water-soluble poly(1-vinylimidazole) (PVI) with [Os(bpy)2Cl]+ and cross-linked with water-soluble poly(ethylene glycol) diglycidyl ether (molecular weight 400, peg 400) are described. The properties of the electrodes depended on their polymers' osmium content, the extent of cross-linking, the pH, and the ionic strength in which they were used. The redox hydrogels' electron diffusion coefficients (De) increased with osmium content of their polymers. The De values were 1.5 x 10(-8), 1.3 x 10(-8), and 4.3 x 10(-9) cm2/s for PVI3-Os, PVI5-Os, and PVI10-Os, respectively, the subscripts indicating the number of monomer units per osmium redox center. De decreased with increasing ionic strength and increased upon protonation of the polymer. In glucose electrodes, made by incorporating into their films glucose oxidase (GOX) through covalent bonding in the cross-linking step, glucose was electrooxidized at > 150 mV (SCE). The characteristics of these electrodes depended on the GOX concentration, film thickness, O2 concentration, pH, NaCl concentration, and electrode potential. The steady-state glucose electrooxidation currents were independent of the polymers' osmium content in the studied (3-10 monomer units per osmium center) range. Electrodes containing 39% GOX reached steady-state glucose electrooxidation current densities of 400 microA/cm2 and, when made with thick gel films, were selective for glucose in the presence of physiological concentrations of ascorbate and acetaminophen.
Redox polymers based on the poly(vinylpyridine) complex of [Os(bpy) 2 Cl] +/2+ were quaternized with methyl iodide, and the quaternized polymers were used to "wire" glucose oxidase. Quaternization enhanced both the rate of electron transport in cross-linked redox hydrogels containing glucose oxidase and the strength of the electrostatic complex formed between the polycationic redox polymer and the polyanionic glucose oxidase. Quaternization with methyl groups also decreased the number of pyridine rings available for cross-linking by the water soluble cross-linker poly(ethylene glycol) diglycidyl ether. The current densities of glucose electrooxidation increased with the degree of quaternization of the "wires" until one-third of the pyridine rings were quaternized, and the activation energies decreased until one-half of the rings were quaternized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.