Antimicrobial peptides are effector molecules of the innate immune system and contribute to host defense and regulation of inflammation. The human cathelicidin antimicrobial peptide LL-37/hCAP-18 is expressed in leukocytes and epithelial cells and secreted into wound and airway surface fluid. Here we show that LL-37 induces angiogenesis mediated by formyl peptide receptor–like 1 expressed on endothelial cells. Application of LL-37 resulted in neovascularization in the chorioallantoic membrane assay and in a rabbit model of hind-limb ischemia. The peptide directly activates endothelial cells, resulting in increased proliferation and formation of vessel-like structures in cultivated endothelial cells. Decreased vascularization during wound repair in mice deficient for CRAMP, the murine homologue of LL-37/hCAP-18, shows that cathelicidin-mediated angiogenesis is important for cutaneous wound neovascularization in vivo. Taken together, these findings demonstrate that LL-37/hCAP-18 is a multifunctional antimicrobial peptide with a central role in innate immunity by linking host defense and inflammation with angiogenesis and arteriogenesis
α1-Antitrypsin (AAT) is the archetype member of the serine protease inhibitor (SERPIN) supergene family. The AAT deficiency is most often associated with the Z mutation, which results in abnormal Z AAT folding in the endoplasmic reticulum of hepatocytes during biogenesis. This causes intra-cellular retention of the AAT protein rather than efficient secretion with consequent deficiency of circulating AAT. The reduced serum levels of AAT contribute to the development of chronic obstructive pulmonary disease (COPD) and the accumulation of abnormally folded AAT protein increases risk for liver diseases. In this review we show that with the discovery of AAT deficiency in the early 60s as a genetically determined predisposition to the development of early-onset emphysema, intensive investigations of enzymatic mechanisms that produce lung destruction in COPD were pursued. To date, the role of AAT in other than lung and liver diseases has not been extensively examined. Current findings provide new evidence that, in addition to protease inhibition, AAT expresses anti-inflammatory, immunomodulatory and antimicrobial properties, and highlight the importance of this protein in health and diseases. In this review co-occurrence of several diseases with AAT deficiency is discussed.
The role of vitamin D (VitD) in calcium and bone homeostasis is well described. In the last years, it has been recognized that in addition to this classical function, VitD modulates a variety of processes and regulatory systems including host defense, inflammation, immunity, and repair. VitD deficiency appears to be frequent in industrialized countries. Especially patients with lung diseases have often low VitD serum levels. Epidemiological data indicate that low levels of serum VitD is associated with impaired pulmonary function, increased incidence of inflammatory, infectious or neoplastic diseases. Several lung diseases, all inflammatory in nature, may be related to activities of VitD including asthma, COPD and cancer. The exact mechanisms underlying these data are unknown, however, VitD appears to impact on the function of inflammatory and structural cells, including dendritic cells, lymphocytes, monocytes, and epithelial cells. This review summarizes the knowledge on the classical and newly discovered functions of VitD, the molecular and cellular mechanism of action and the available data on the relationship between lung disease and VitD status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.