The Baltimore computed tomography (CT) prediction model for bleeding pelvic fractures is a multivariable decision tool that predicts angiopositivity from pelvic hematoma volume, active arterial bleeding, fracture patterns, and atherosclerosis. We hypothesized that quantitative markers of body composition and frailty could further improve model performance. Methods: This work is a retrospective secondary analysis of a single institution cohort used in the development of the Baltimore CT prediction model. The cohort includes 115 consecutive patients that underwent admission contrast-enhanced CT of the abdomen and pelvis for blunt trauma with pelvic ring disruption followed by conventional angiography. Major arterial injury requiring angioembolization served as the outcome variable. Angioembolization was required in 73/115 patients (63% of the cohort). Average age was 46.9 years (±SD 20.4). Body composition measurements were determined as 2-dimensional (2D) or 3-dimensional (3D) parameters and included mid-L3 trabecular bone attenuation, abdominal visceral fat area or volume, and percent muscle fat fraction (as a marker of sarcopenia) measured using segmentation and histogram analysis. Results: Models incorporating 2D (Model B) or 3D markers (model C) of body composition showed improvement over the original Baltimore model (model A) in all parameters of performance, quality, and fit (area under the receiver-operating curve [AUC], Akaike information criterion, Brier score, Hosmer-Lemeshow test, and adjusted-R2). Area under the receiver-operating curve increased from 0.83 (A), to 0.86 (B), and 0.88 (C). The greatest improvement was seen with 3D parameters. Conclusion: Once automated, quantitative visualization tools providing “free” 3D body composition information can be expected to improve personalized precision diagnostics, outcome prediction, and decision support in patients with bleeding pelvic fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.