This study was designed to identify highly recurrent genetic alterations typical of Sézary syndrome (Sz), an aggressive cutaneous T-cell lymphoma/leukemia, possibly revealing pathogenetic mechanisms and novel therapeutic targets. High-resolution array-based comparative genomic hybridization was done on malignant T cells from 20 patients. Expression levels of selected biologically relevant genes residing within loci with frequent copy number alteration were measured using quantitative PCR. Combined binary ratio labeling-fluorescence in situ hybridization karyotyping was done on malignant cells from five patients. Minimal common regions with copy number alteration occurring in at least 35% of patients harbored 15 bona fide oncogenes and 3 tumor suppressor genes. Based on the function of the identified oncogenes and tumor suppressor genes, at least three molecular mechanisms are relevant in the pathogenesis of Sz. First, gain of cMYC and loss of cMYC antagonists (MXI1 and MNT) were observed in 75% and 40% to 55% of patients, respectively, which were frequently associated with deregulated gene expression. The presence of cMYC/ MAX protein heterodimers in Sézary cells was confirmed using a proximity ligation assay. Second, a region containing TP53 and genome maintenance genes (RPA1/HIC1) was lost in the majority of patients. Third, the interleukin 2 (IL-2) pathway was affected by gain of STAT3/STAT5 and IL-2 (receptor) genes in 75% and 30%, respectively, and loss of TCF8 and DUSP5 in at least 45% of patients. In sum, the Sz genome is characterized by gross chromosomal instability with highly recurrent gains and losses. Prominent among deregulated genes are those encoding cMYC, cMYCregulating proteins, mediators of MYC-induced apoptosis, and IL-2 signaling pathway components. [Cancer Res 2008; 68(8):2689-98]
Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is a malignancy of mature, skin-homing T cells. Sé zary syndrome (Sz) is often considered to represent a leukemic phase of MF. In this study, the pattern of numerical chromosomal alterations in MF tumor samples was defined using array-based comparative genomic hybridization (CGH); simultaneously, gene expression was analyzed using microarrays. Highly recurrent chromosomal alterations in MF include gain of 7q36, 7q21-7q22 and loss of 5q13 and 9p21. The pattern characteristic of MF differs markedly from chromosomal alterations observed in Sz. Integration of data from array-based CGH and gene-expression analysis yielded several candidate genes with potential relevance in the pathogenesis of MF. We confirmed that the FASTK and SKAP1 genes, residing in loci with recurrent gain, demonstrated increased expression. The RB1 and DLEU1 tumor suppressor genes showed diminished expression associated with loss. In addition, it was found that the presence of chromosomal alterations on 9p21, 8q24, and 1q21-1q22 was associated with poor prognosis in patients with MF. This study provides novel insight into genetic alterations underlying MF. Furthermore, our analysis uncovered genomic differences between MF and Sz, which suggest that the molecular pathogenesis and therefore therapeutic requirements of these cutaneous T-cell lymphomas may be distinct. (Blood. 2009; 113:127-136)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.