BackgroundWhile a large body of work exists on comparing and benchmarking descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM, a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets, namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of HIV enzyme mutants.ResultsThe amino acid descriptor sets compared here show similar performance (<0.1 log units RMSE difference and <0.1 difference in MCC), while errors for individual proteins were in some cases found to be larger than those resulting from descriptor set differences ( > 0.3 log units RMSE difference and >0.7 difference in MCC). Combining different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last.ConclusionsWhile amino acid descriptor sets capture different aspects of amino acids their ability to be used for bioactivity modeling is still – on average – surprisingly similar. Still, combining sets describing complementary information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01 better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared thereby underlining that choosing an appropriate descriptor set is of fundamental for bioactivity modeling, both from the ligand- as well as the protein side.
BackgroundWhile a large body of work exists on comparing and benchmarking of descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 different protein descriptor sets have been compared with respect to their behavior in perceiving similarities between amino acids. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI and BLOSUM, and a novel protein descriptor set termed ProtFP (4 variants). We investigate to which extent descriptor sets show collinear as well as orthogonal behavior via principal component analysis (PCA).ResultsIn describing amino acid similarities, MSWHIM, T-scales and ST-scales show related behavior, as do the VHSE, FASGAI, and ProtFP (PCA3) descriptor sets. Conversely, the ProtFP (PCA5), ProtFP (PCA8), Z-Scales (Binned), and BLOSUM descriptor sets show behavior that is distinct from one another as well as both of the clusters above. Generally, the use of more principal components (>3 per amino acid, per descriptor) leads to a significant differences in the way amino acids are described, despite that the later principal components capture less variation per component of the original input data.ConclusionIn this work a comparison is provided of how similar (and differently) currently available amino acids descriptor sets behave when converting structure to property space. The results obtained enable molecular modelers to select suitable amino acid descriptor sets for structure-activity analyses, e.g. those showing complementary behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.