In apparent contradiction to the laws of thermodynamics, Maxwell's demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon's memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.quantum thermodynamics | superconducting circuits | quantum information I n 1867, pondering the newly developed thermodynamic laws, Maxwell came to the disturbing conclusion that a "demon" can extract work cyclically from a thermodynamic system beyond the limits set by the second law when acting upon the information it obtains about the system (1). This paradox was resolved a century later when Landauer realized that information processing has an entropic cost and Bennett argued that the demon's memory must take full part in the thermodynamic cycle (2). Recent experiments have realized classical versions of elementary Maxwell demons in various physical systems (3-8). Although quantum versions have long been investigated theoretically (9-13), experimental realizations are in their infancy (7,8), and a full characterization is still missing. Using superconducting circuits, we reveal the inner mechanics of a quantum Maxwell demon that is able to extract work from a quantum system. Importantly, we are able to directly probe the extracted work by measuring the output power emitted by the system through stimulated emission, without inferring it from system trajectories (3-6, 14). We are thus able to demonstrate how the information stored in the demon's memory affects the extracted work. To make the characterization complete, we also measure the entropy and energy of the system and the demon. Superconducting circuits thus reveal themselves as a suitable experimental testbed for the blooming field of quantum thermodynamics of information (15)(16)(17)(18)(19).In the experiment, the system S is a transmon superconducting qubit (20) with energy difference hfS = h × 7.09 GHz between its ground |g and excited |e states. It is embedded in a microwave cavity that resonates at fD = 7.91 GHz and plays the role of the demon's memory D. The dispersive Hamiltonian reads H = hfS |e e|S + hfD d † d − hχd † d |e e|S , where d is the annihilation operator of a photon in the cavity. The last term induces a frequency shift of the cavity by −χ = −33 MHz when the qubit is excited. Reciprocally, the qubit frequency is shif...
We consider a composite open quantum system consisting of a fast subsystem coupled to a slow one. Using the time-scale separation, we develop an adiabatic elimination technique to derive at any order the reduced model describing the slow subsystem. The method, based on an asymptotic expansion and geometric singular perturbation theory, ensures the physical interpretation of the reduced second-order model by giving the reduced dynamics in a Lindblad form and the state reduction in Kraus map form. We give explicit second-order formulas for Hamiltonian or cascade coupling between the two subsystems. These formulas can be used to engineer, via a careful choice of the fast subsystem, the Hamiltonian and Lindbald operators governing the dissipative dynamics of the slow subsystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.