Gait disorders are major causes of falls in patients with neurological diseases. Understanding these disorders allows prevention and better insights into underlying diseases. InertiaLocoGraphy (ILG) –the quantification of gait by using inertial measurement units (IMUs) –shows great potential to address this public health challenge, but protocols vary widely and normative values of gait parameters are still unavailable. This systematic review critically compares ILG protocols, questions features extracted from inertial signals and proposes a semeiological analysis of clinimetric characteristics for use in neurological clinical routine. For this systematic review, PubMed, Cochrane and EMBASE were searched for articles assessing gait quality by using IMUs that were published from January 1, 2014 to August 31, 2016. ILG was used to assess gait in a wide range of neurological disorders – including Parkinson disease, mild cognitive impairment, Alzheimer disease, cerebral palsy, and cerebellar atrophy – as well as in the faller or frail older population and in people presenting rheumatological pathologies. However, results have not yet been driving changes in clinical practice. One reason could be that studies mainly aimed at comparing pathological gait to healthy gait, but there is stronger need for semiological descriptions of gait perturbation, severity or prognostic assessment. Furthermore, protocols used to assess gait using IMUs are too many. Likely, outcomes are highly heterogeneous and difficult to compare across large panels of studies. Therefore, homogenization is needed to foster the use of ILG to assess gait quality in neurological routine practice. The pros and cons of each protocol are emphasized so that a compromise can be reached. As well, analysis of seven complementary clinical criteria (springiness, sturdiness, smoothness, steadiness, stability, symmetry, synchronization) is advocated.
For diagnosis and follow up, it is important to be able to quantify limp in an objective, and precise way adapted to daily clinical consultation. The purpose of this exploratory study was to determine if an inertial sensor-based method could provide simple features that correlate with the severity of lower limb osteoarthritis evaluated by the WOMAC index without the use of step detection in the signal processing. Forty-eight patients with lower limb osteoarthritis formed two severity groups separated by the median of the WOMAC index (G1, G2). Twelve asymptomatic age-matched control subjects formed the control group (G0). Subjects were asked to walk straight 10 meters forward and 10 meters back at self-selected walking speeds with inertial measurement units (IMU) (3-D accelerometers, 3-D gyroscopes and 3-D magnetometers) attached on the head, the lower back (L3-L4) and both feet. Sixty parameters corresponding to the mean and the root mean square (RMS) of the recorded signals on the various sensors (head, lower back and feet), in the various axes, in the various frames were computed. Parameters were defined as discriminating when they showed statistical differences between the three groups. In total, four parameters were found discriminating: mean and RMS of the norm of the acceleration in the horizontal plane for contralateral and ipsilateral foot in the doctor’s office frame. No discriminating parameter was found on the head or the lower back. No discriminating parameter was found in the sensor linked frames. This study showed that two IMUs placed on both feet and a step detection free signal processing method could be an objective and quantitative complement to the clinical examination of the physician in everyday practice. Our method provides new automatically computed parameters that could be used for the comprehension of lower limb osteoarthritis. It may not only be used in medical consultation to score patients but also to monitor the evolution of their clinical syndrome during and after rehabilitation. Finally, it paves the way for the quantification of gait in other fields such as neurology and for monitoring the gait at a patient’s home.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.