We investigate decidability, complexity and expressive power issues for (first-order) separation logic with one record field (herein called SL) and its fragments. SL can specify properties about the memory heap of programs with singly-linked lists. Separation logic with two record fields is known to be undecidable by reduction of finite satisfiability for classical predicate logic with one binary relation. Surprisingly, we show that second-order logic is as expressive as SL and as a by-product we get undecidability of SL. This is refined by showing that SL without the separating conjunction is as expressive as SL, whence undecidable too. As a consequence of this deep result, in SL the magic wand can simulate the separating conjunction. By contrast, we establish that SL without the magic wand is decidable with non-elementary complexity by reduction from satisfiability for the first-order theory over finite words. Equivalence between second-order logic and separation logic extends to the case with more than one selector.
We investigate decidability, complexity and expressive power issues for (first-order) separation logic with one record field (herein called SL) and its fragments. SL can specify properties about the memory heap of programs with singly-linked lists. Separation logic with two record fields is known to be undecidable by reduction of finite satisfiability for classical predicate logic with one binary relation. Surprisingly, we show that second-order logic is as expressive as SL and as a by-product we get undecidability of St.. This is refined by showing that SL without the separating conjunction is as expressive as SL, whence undecidable too. As a consequence, in SL the separating implication (also known as the magic wand) can simulate the separating conjunction. By contrast, we establish that SL without the magic wand is decidable, and we prove a non-elementary complexity by reduction from satisfiability for the first-order theory over finite words. This result is extended with a bounded use of the magic wand that appears in Hoare-style rules. As a generalization, it is shown that kSL, the separation logic over heaps with k >= 1 record fields, is equivalent to kSO, the second-order logic over heaps with k record fields. (C) 2012 Elsevier Inc. All rights reserved
Motivated by the verification of programs with pointer variables, we introduce a temporal logic LTL mem whose underlying assertion language is the quantifier-free fragment of separation logic and the temporal logic on the top of it is the standard linear-time temporal logic LTL. We analyze the complexity of various model-checking and satisfiability problems for LTL mem , considering various fragments of separation logic (including pointer arithmetic), various classes of models (with or without constant heap), and the influence of fixing the initial memory state. We provide a complete picture based on these criteria. Our main decidability result is pspace-completeness of the satisfiability problems on the record fragment and on a classical fragment allowing pointer arithmetic. Σ 0 1-completeness or Σ 1 1-completeness results are established for various problems by reducing standard problems for Minsky machines, and underline the tightness of our decidability results.
Motivated by the verification of programs with pointer variables, we introduce a temporal logic LTL mem whose underlying assertion language is the quantifier-free fragment of separation logic and the temporal logic on the top of it is the standard linear-time temporal logic LTL. We analyze the complexity of various model-checking and satisfiability problems for LTL mem , considering various fragments of separation logic (including pointer arithmetic), various classes of models (with or without constant heap), and the influence of fixing the initial memory state. We provide a complete picture based on these criteria. Our main decidability result is pspace-completeness of the satisfiability problems on the record fragment and on a classical fragment allowing pointer arithmetic. Σ 0 1 -completeness or Σ 1 1 -completeness results are established for various problems by reducing standard problems for Minsky machines, and underline the tightness of our decidability results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.