Abstract. This paper provides a summary of the work done within Phase III of the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) project, under the International Energy Agency Wind Technology Collaboration Programme Task 30. This phase focused on validating the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure. Numerical models of the Technical University of Denmark 10 MW reference wind turbine were validated using measurement data from a 1:75 scale test performed during the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project and a follow-on experimental campaign, both performed at the Politecnico di Milano wind tunnel. Validation of the models was performed by comparing the loads for steady (fixed platform) and unsteady (harmonic motion of the platform) wind conditions. For the unsteady wind conditions, the platform was forced to oscillate in the surge and pitch directions under several frequencies and amplitudes. These oscillations result in a wind variation that impacts the rotor loads (e.g., thrust and torque). For the conditions studied in these tests, the system aerodynamic response was almost steady. Only a small hysteresis in airfoil performance undergoing angle of attack variations in attached flow was observed. During the experiments, the rotor speed and blade pitch angle were held constant. However, in real wind turbine operating conditions, the surge and pitch variations would result in rotor speed variations and/or blade pitch actuations, depending on the wind turbine controller region that the system is operating. Additional simulations with these control parameters were conducted to verify the fidelity of different models. Participant results showed, in general, a good agreement with the experimental measurements and the need to account for dynamic inflow when there are changes in the flow conditions due to the rotor speed variations or blade pitch actuations in response to surge and pitch motion. Numerical models not accounting for dynamic inflow effects predicted rotor loads that were 9 % lower in amplitude during rotor speed variations and 18 % higher in amplitude during blade pitch actuations.
To enable the development of floating offshore wind farms, it is important to have a clear understanding of the aerodyamic forces applied on a floating offshore wind turbine. The paper presents comparisons between a lifting line free vortex wake method and an actuator line method in the case of a wind turbine in surge with blade-resolved CFD data as a reference. Each model is compared to a quasi-steady estimation of the loads to understand the variations due to the surge movement. The near-wake flow field is investigated in order to give an insight into the flow features leading to the observed behavior. Both methods predict a higher axial velocity at the position of the rotor and one radius downstream of the rotor in surge conditions compared to the fixed case.
Abstract. This study reports the results of the second round of analyses of the OC6 project Phase III. While the first round investigated rotor aerodynamic loading, here focus is given to the wake behavior of a floating wind turbine under large motion. Wind tunnel experimental data from the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project are compared with the results of simulations provided by participants with methods and codes of different levels of fidelity. The effect of platform motion both on the near and the far wake is investigated. More specifically, the behavior of tip vortices in the near wake is evaluated through multiple metrics, such as streamwise position, core radius, convection velocity, and circulation. Additionally, the onset of velocity oscillations in the far wake is analyzed because this can have a negative effect on stability and loading of downstream rotors. Results in the near wake for unsteady cases confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the rotor reduced frequency increases over 0.5. Additionally, differences across the simulations become significant, suggesting that further efforts are required to tune the currently available methodologies in order to correctly evaluate the aerodynamic response of a floating wind turbine in unsteady conditions. Regarding the far wake, it is seen that, in some conditions, numerical methods over-predict the impact of platform motion on the velocity fluctuations. Moreover, results suggest that, different from original expectations about a faster wake recovery in a floating wind turbine, the effect of platform motion on the far wake seems to be limited or even oriented to the generation of a wake less prone to dissipation.
Floater motions introduce unsteadiness in the aerodynamics of floating offshore wind turbines. The aerodynamics of a wind turbine after three perturbations are studied: a blade pitch step, a rotor speed step for which dynamic inflow is expected, and a surge velocity step. The free vortex wake method and an analytical helical vortex model based on the Joukowsky rotor model are used to study the dynamic behavior of the induced velocity at the blades. As expected, the dynamic inflow effect is clear for the blade pitch and rotor speed changes, but for a surge velocity step, the models show that very little dynamic inflow effect takes place because the velocity induced by the vortex helix is not significantly modified: the tip vortex helix circulation change is partially compensated by the geometry change of the helix. For the rate of change, the velocities induced on the rotor by the vortex helix for the pitch and rotor speed changes show a rapid adjustment at the blade tip, with a slower change throughout the rest of the blade and at the center of the rotor.The convection velocity of the tip vortices is shown to be the main variable of the temporal evolution of the dynamic inflow effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.