Recently, several high dimensional classification methods have been proposed to automatically discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls (CN) based on T1-weighted MRI. However, these methods were assessed on different populations, making it difficult to compare their performance. In this paper, we evaluated the performance of ten approaches (five voxel-based methods, three methods based on cortical thickness and two methods based on the hippocampus) using 509 subjects from the ADNI database. Three classification experiments were performed: CN vs AD, CN vs MCIc (MCI who had converted to AD within 18 months, MCI converters - MCIc) and MCIc vs MCInc (MCI who had not converted to AD within 18 months, MCI non-converters - MCInc). Data from 81 CN, 67 MCInc, 39 MCIc and 69 AD were used for training and hyperparameters optimization. The remaining independent samples of 81 CN, 67 MCInc, 37 MCIc and 68 AD were used to obtain an unbiased estimate of the performance of the methods. For AD vs CN, whole-brain methods (voxel-based or cortical thickness-based) achieved high accuracies (up to 81% sensitivity and 95% specificity). For the detection of prodromal AD (CN vs MCIc), the sensitivity was substantially lower. For the prediction of conversion, no classifier obtained significantly better results than chance. We also compared the results obtained using the DARTEL registration to that using SPM5 unified segmentation. DARTEL significantly improved six out of 20 classification experiments and led to lower results in only two cases. Overall, the use of feature selection did not improve the performance but substantially increased the computation times.
We describe a new method to automatically discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls, based on multidimensional classification of hippocampal shape features. This approach uses spherical harmonics (SPHARM) coefficients to model the shape of the hippocampi, which are segmented from magnetic resonance images (MRI) using a fully automatic method that we previously developed. SPHARM coefficients are used as features in a classification procedure based on support vector machines (SVM). The most relevant features for classification are selected using a bagging strategy. We evaluate the accuracy of our method in a group of 23 patients with AD (10 males, 13 females, age ±standard-deviation (SD)=73±6 years, mini-mental score (MMS)=24.4±2.8), 23 patients with amnestic MCI (10 males, 13 females, age±SD=74±8 years, MMS=27.3±1.4) and 25 elderly healthy controls (13 males,12 females, age±SD=64±8 years), using leave-one-out cross-validation. For AD vs controls, we obtain a correct classification rate of 94%, a sensitivity of 96%, and a specificity of 92%. For MCI vs controls, we obtain a classification rate of 83%, a sensitivity of 83%, and a specificity of 84%. This accuracy is superior to that of hippocampal volumetry and is comparable to recently published SVM-based whole-brain classification methods, which relied on
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.