Keywords:Modeling Experimental Scroll Screw Piston Roots Volumetric Expander ORC a b s t r a c tThe aim of this paper is to facilitate the selection of the expander for a small-scale organic Rankine cycle based on an experimental comparison of a piston, a screw, a scroll and a roots expander. First, based on a literature review, a comparison between these four technologies of volumetric expansion machines is performed. Afterward, four displacement expanders [2e4 kW] are tested on two similar small-scale ORC unit with fluid R245fa. The maximum effective isentropic efficiencies measured are 53% for the piston expander and the screw expander, 76% for the variable-speed scroll and 48% for the roots machine. However, these performances do not reflect the highest efficiencies achievable by each expander: the test-rig presents experimental limitations in terms of mass flow rate and pressure drop (among others) that restricts the achievable operating conditions. The calibration of semi-empirical models based on the measurements allows to overcome this issue and to predict the isentropic efficiency in optimal conditions despite the limitations of the test-rigs. Based on experimental results, extrapolated prediction of the semi-empirical model and practical considerations, some guidelines are drawn to help the reader to select properly a volumetric expander.
True off-design models must be charge-sensitive to be fully deterministic. • To account for the charge helps to identify the heat exchangers coefficients. • Hugmark's void fraction model shows the best results to simulate two-phase flows. • The presence of a liquid receiver arises numerical issues to model ORC systems. • The charge-sensitive model is validated with experimental data.
A B S T R A C TGenerally, > 40% of the useful energy (cooling engine and exhaust gases) are wasted by a biogas power plant through the cooling radiator and the exhaust gases. An efficient way to convert this waste heat into work and eventually electricity is the use of an organic Rankine cycle (ORC) power system. Over the last few years, different architectures have been widely investigated (subcritical, wet expansion and trans-critical). Despite the promising performances, realistic economic and technical constraints, also related to the application, are required for a meaningful comparison between ORC technologies and architectures. Starting from the limited literature available, the aim of the present paper is to provide a methodology to compare sub-critical, transcritical and wet expansion cycles and different types of expanders (both volumetric and turbomachinery) from both technical and economic point of view, which represent one of the main novel aspects of the present work. In particular, the paper focuses on the thermo-economic optimization of an ORC waste heat recovery unit for a 500 kWe biogas power plant located in a detailed regional market, which was not investigated yet. By means of a genetic algorithm, the adopted methodology optimizes a given economic criteria (Pay-Back Period, Net Present Value, Profitability Index and Internal Rate of Return) while respecting technical constraints (expander limitations) and thermodynamic constraints (positive pinch points in heat exchangers, etc.).The results show that optimal ORC solutions with a potential of energy savings up to 600 MWh a year and with a pay-back period lower than 3 years are achievable in the regional market analysed.
Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the off-design simulation of ORC-based power systems. To this end, three types of modelling paradigms (namely a constantefficiency method, a polynomial-based method and a semi-empirical method) are compared both in terms of their fitting and extrapolation capabilities. Postprocessed measurements gathered on two experimental ORC facilities are used as reference for the models calibration and evaluation. The study is first applied at a component level (i.e. each component is analysed individually) and then extended to the characterization of the entire organic Rankine cycle power systems. Benefits and limitations of each modelling method are discussed. The results show that semi-empirical models are the most reliable for simulating the * Corresponding author Email addresses: rdickes@ulg.ac.be (Rémi Dickes), olivier.dumont@ulg.ac.be (Olivier Dumont), remi.daccord@exoes.com (Rémi Daccord), squoilin@ulg.ac.be (Sylvain Quoilin), vincent.lemort@ulg.ac.be (Vincent Lemort)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.