In this study, we assessed global gene expression patterns in adolescent mice exposed to lead (Pb) as infants and their aged siblings to identify reprogrammed genes. Global expression on postnatal day 20 and 700 was analyzed and genes that were down- and up-regulated (≥2 fold) were identified, clustered and analyzed for their relationship to DNA methylation. About 150 genes were differentially expressed in old age. In normal aging, we observed an up-regulation of genes related to the immune response, metal-binding, metabolism and transcription/transduction coupling. Prior exposure to Pb revealed a repression in these genes suggesting that disturbances in developmental stages of the brain compromise the ability to defend against age-related stressors, thus promoting the neurodegenerative process. Overexpression and repression of genes corresponded with their DNA methylation profile.
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects millions in the aging population worldwide and will affect millions more in the next 20 years. Over 90% of all cases are sporadic, with genetics playing a minor role in the etiology of AD. Therefore, it is crucial to investigate the environment and diet as primary risk factors in AD pathology. This review considers epidemiologic case control studies, and in vitro and in vivo research to investigate the potential of environmental exposure to metals, air pollution and pesticides as well as diet as risk factors for AD. In some cases, the role of genetic mutations and environmental risk is discussed. The evidence examined in this review provides a brief overview of the current literature on selected, significant risk factors in promoting amyloid-beta accumulation and aggregation, thus contributing to neurodegeneration.
Alzheimer's disease (AD) is characterized by plaques of amyloid–beta (Aβ) peptide, cleaved from amyloid–β precursor protein (AβPP). Our hypothesis is that lifespan profiles of AD-associated mRNA and protein levels in monkeys would differ from mice, and that differential lifespan expression profiles would be useful to understand human AD pathogenesis. We compared profiles of AβPP mRNA, AβPP protein, and Aβ levels in rodents and primates. We also tracked a transcriptional regulator of the AβPP gene, specificity protein 1 (SP1), and the β amyloid precursor cleaving enzyme (BACE1). In mice, AβPP and Sp1 mRNA and their protein products were elevated late in life; Aβ levels declined in old age. In monkeys, Sp1, AβPP, and BACE1 mRNA declined in old age, while protein products and Aβ levels rose. Proteolytic processing in both species did not match production of Aβ. In primates, AβPP and Sp1 mRNA levels coordinate, but an inverse relationship exists with corresponding protein products, as well as Aβ levels. Comparison of human DNA and mRNA sequences to monkey and mouse counterparts revealed structural features that may explain differences in transcriptional and translational processing. These findings are important for selecting appropriate models for AD and other age–related diseases.
The progressive and latent nature of neurodegenerative diseases, such as Alzheimer’s disease (AD) indicates the role of epigenetic modification in disease susceptibility. Previous studies from our lab show that developmental exposure to lead (Pb) perturbs the expression of AD-associated proteins. In order to better understand the role of DNA methylation as an epigenetic modifications mechanism in gene expression regulation, an integrative study of global gene expression and methylation profiles is essential. Given the different formats of gene expression and methylation data, combining these data for integrative analysis can be challenging. In this paper we describe a method to integrate and analyze gene expression and methylation arrays. Methylation array raw data contain the signal intensities of each probe of CpG sites, whereas gene expression data measure the signal intensity values of genes. In order to combine these data, methylation data of CpG sites have to be associated with genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.