Summary In modern society, the natural drive to behave impulsively in order to obtain rewards must often be curbed. A continued failure to do so is associated with a range of outcomes including drug abuse, pathological gambling, and obesity. Here, we used virtual reality technology to investigate whether spatial proximity to rewards has the power to exacerbate the drive to behave impulsively toward them. We embedded two behavioral tasks measuring distinct forms of impulsive behavior, impulsive action, and impulsive choice, within an environment rendered in virtual reality. Participants responded to three-dimensional cues representing food rewards located in either near or far space. Bayesian analyses revealed that participants were significantly less able to stop motor actions when rewarding cues were near compared with when they were far. Since factors normally associated with proximity were controlled for, these results suggest that proximity plays a distinctive role in driving impulsive actions for rewards.
Serotonin is a critical neurotransmitter in the regulation of emotional behavior. Although emotion processing is known to engage a corticolimbic circuit, including the amygdala and prefrontal cortex, exactly how this brain system is modulated by serotonin remains unclear. Here, we hypothesized that serotonin modulates variability in excitability and functional connectivity within this circuit. We tested whether this modulation contributes to inter-individual differences in emotion processing. Using a multimodal neuroimaging approach with a simultaneous PET-3T fMRI scanner, we simultaneously acquired BOLD signal while participants viewed emotional faces depicting fear and anger, while also measuring serotonin transporter (SERT) levels, regulating serotonin functions. Individuals with higher activity of the medial amygdala BOLD in response to fearful or angry facial expressions, who were temperamentally more anxious, also exhibited lower SERT availability in the dorsal raphe nucleus (DRN). Moreover, higher connectivity of the medial amygdala with the left dorsolateral prefrontal and the anterior cingulate cortex was associated with lower levels of SERT availability in the DRN. These results demonstrate the association between the serotonin transporter level and emotion processing through changes in functional interactions between the amygdala and the prefrontal areas in healthy humans.
Humans frequently interact with other agents whose intentions can fluctuate over time between competitive and cooperative strategies. How does the brain decide whether the others’ intentions are to cooperate or compete when the nature of the interactions is not explicitly signaled? We used model-based fMRI and a task in which participants thought they were playing with another player. In fact, this agent was an algorithm alternating without signaling between cooperative and competitive strategies. A neurocomputational mechanism underlying arbitration between competitive and cooperative experts outperforms other learning models in predicting choice behavior. The ventral striatum and ventromedial prefrontal cortex tracked the reliability of this arbitration process. When attributing competitive intentions, these regions increased their coupling with a network that distinguish prediction error related to competition versus cooperation. These findings provide a neurocomputational account of how the brain dynamically arbitrates between cooperative and competitive intentions when making adaptive social decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.