We examined the expression levels of microRNAs (miRNAs (miRs)) in colorectal tumors (63 cancer specimens and 65 adenoma specimens) and paired non-tumorous tissues. Decreased expression of miR-143 and -145 was frequently observed in the adenomas and cancers tested, compared with miR-34a downregulation and miR-21 upregulation. Expression profiles of miR-143 and -145 were not associated with any clinical features. As the downregulation of miR-143 and -145 was observed even in the early phase of adenoma formation, the decreased expression of both miRs would appear to contribute mainly to the initiation step of tumorigenesis, not to the progression stage, and not to clinical prognostic factors. For clinical application, we changed the sequences of the passenger strand in the miR-143 duplex and performed chemical modification at the 3 0 -overhang portion of miR-143, leading to greater activity and stability to nuclease. The cell growth inhibitory effect of the chemically modified synthetic miR-143 in vitro was greater than that of endogenous miR-143. The miR-143 showed a significant tumor-suppressive effect on xenografted tumors of DLD-1 human colorectal cancer cells. These findings suggest that miR-143 and -145 are important oncorelated genes for the initiation step of colorectal tumor development and that the chemically modified synthetic miR-143 may be a hopeful candidate as an RNA medicine for the treatment of colorectal tumors.
Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3′-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3′-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.
We have developed chemically modified siRNAs and miRNAs bearing urea/thiourea-bridged aromatic compounds at their 3'-end for RNAi therapy. Chemically modified RNAs possessing urea/thiourea-bridged aromatic compounds instead of naturally occurring dinucleotides at the 3'-overhang region were easily prepared in good yields and were more resistant to nucleolytic hydrolysis than unmodified RNA. siRNAs containing urea or thiourea derivatives showed the desired knockdown effect. Furthermore, modified miR-143 duplexes carrying the urea/thiourea compounds in the 3'-end of each strand were able to inhibit the growth of human bladder cancer T24 cells.
We developed a practical and reliable method for synthesizing an abasic deoxyribonucleoside, 1,2-dideoxy-d-ribofuranose (dR(H)) via elimination of nucleobase from thymidine. To synthesize oligonucleotides bearing dR(H) by the standard phosphoramidite solid-phase method, dR(H) was converted to the corresponding phosphoramidite derivative and linked to a solid support (controlled pore glass resin). Chemically modified small interfering RNAs (siRNAs) possessing dR(H) at their 3'-overhang regions were synthesized. Introducing dR(H) to the 3'-end of the antisense strand of siRNA reduced its knockdown effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.