This paper presents the influence of the grinding-burnishing on surface integrity and corrosion performance of the laser-cladded AISI 431 alloys. As-cladded specimens were first ground followed by plasticity ball burnishing. To evaluate surface alteration and performance enhancement, six major properties were measured and analysed in terms of surface roughness, porosity, microhardness, wear, and impact and corrosion resistance. Results showed that grinding-burnishing significantly improved the surface finish by lowering Ra and Rz by up to 29% and 41%, respectively, compared to grinding, while surface porosity was found to decrease by 18%. Maximum surface microhardness increased by 32% when grinding-burnishing, with a modified depth of up to 250 μm, while wear resistance increased by up to 38%. Because of hardness improvement, the grinding-burnishing increased the impact resistance by lowering the maximum indent depth by 29%. The corrosion resistance improved by increasing positive corrosion potential from − 0.31 V (grinding) to − 0.21 V (grinding-burnishing) and lowering corrosion current density from 1.18 × 10−3 A.cm−2 (for grinding) to 2.1 × 10−5 A.cm−2 (grinding-burnishing). Burnishing further induced grain modification in terms of grain deformation and flattening within microstructure, but no significant grain refinement was observed. XRD results however showed lattice deformation indicating potential compressive residual stress generated by burnishing. Overall, it is imperative to say that the combined grinding-burnishing can be a viable surface modification technique to extend functional service life of the laser-cladded components.
Herein, the influence of the grinding–burnishing on surface integrity, mechanical properties, and corrosion performance of Stellite 21 alloys coating deposited by laser cladding is investigated. The as‐clad specimens are first ground followed by further modification by ball burnishing at forces of 424 N and 509 N. Results show that the grinding–burnishing enhances surface finish by lowering Ra from 2.6 to 0.73 μm and Rz from 13 to 4.9 μm, respectively. Surface porosity is found to decrease from 3.8% to 0.9%. Hardness is increased from 609 HV to 702 HV, with a surface alteration as deep as 250 μm, while wear resistance increases by reducing worn volume from 4.15 to 2.95 mm3. Because of high hardness, the grinding–burnishing increases impact resistance by lowering indent depth by 20%. Grains flatten and surface undulations are remarkably reduced due to burnishing. Finally, grinding–burnishing at 509 N improves the corrosion resistance by increasing positive corrosion potential from −0.41 to −0.14 V and lowering corrosion current density from 6.34 × 10−4 A cm−2 to 2.19 × 10−5 A cm−2, as compared to grinding. This synergistic grinding–burnishing can be a plausible post‐treatment route for the laser‐clad alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.