In eukaryotes, Suv39h H3K9 trimethyltransferases are required for pericentric heterochromatin formation and function. In early mouse preimplantation embryos, however, paternal pericentric heterochromatin lacks Suv39h-mediated H3K9me3 and downstream marks. Here we demonstrate Ezh2-independent targeting of maternally provided polycomb repressive complex 1 (PRC1) components to paternal heterochromatin. In Suv39h2 maternally deficient zygotes, PRC1 also associates with maternal heterochromatin lacking H3K9me3, thereby revealing hierarchy between repressive pathways. In Rnf2 maternally deficient zygotes, the PRC1 complex is disrupted, and levels of pericentric major satellite transcripts are increased at the paternal but not the maternal genome. We conclude that in early embryos, Suv39h-mediated H3K9me3 constitutes the dominant maternal transgenerational signal for pericentric heterochromatin formation. In absence of this signal, PRC1 functions as the default repressive back-up mechanism. Parental epigenetic asymmetry, also observed along cleavage chromosomes, is resolved by the end of the 8-cell stage--concurrent with blastomere polarization--marking the end of the maternal-to-embryonic transition.
Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which paternal-specific silencing depends on expression of the noncoding RNA Kcnq1ot1. We show that Kcnq1ot1 is expressed from the zygote stage onward and rapidly associates with chromatin marked by Polycomb group (PcG) proteins and repressive histone modifications, forming a discrete repressive nuclear compartment devoid of RNA polymerase II, a configuration also observed at the Igf2r imprinted cluster. In this compartment, the paternal Kcnq1 cluster exists in a three-dimensionally contracted state. In vivo the PcG proteins Ezh2 and Rnf2 are independently required for genomic contraction and imprinted silencing. We propose that the formation of a parental-specific higher-order chromatin organization renders imprint clusters competent for monoallelic silencing and assign a central role to PcG proteins in this process.
Topoisomerases are essential for DNA replication in dividing cells, but their genomic targets and function in postmitotic cells remain poorly understood. Here we show that a switch in the expression from Topoisomerases IIα (Top2α) to IIβ (Top2β) occurs during neuronal differentiation in vitro and in vivo. Genome-scale location analysis in stem cell-derived postmitotic neurons reveals Top2β binding to chromosomal sites that are methylated at lysine 4 of histone H3, a feature of regulatory regions. Indeed Top2β-bound sites are preferentially promoters and become targets during the transition from neuronal progenitors to neurons, at a time when cells exit the cell cycle. Absence of Top2β protein or its activity leads to changes in transcription and chromatin accessibility at many target genes. Top2β deficiency does not impair stem cell properties and early steps of neuronal differentiation but causes premature death of postmitotic neurons. This neuronal degeneration is caused by up-regulation of Ngfr p75, a gene bound and repressed by Top2β. These findings suggest a chromatin-based targeting of Top2β to regulatory regions in the genome to govern the transcriptional program associated with neuronal differentiation and longevity.epigenetic regulation | neurogenesis | gene expression | genomewide assays T opoisomerases are essential for solving topological problems arising from DNA-templated processes such as replication, transcription, recombination, chromatin remodeling, chromosome condensation, and segregation (1-5). The type I subfamily of topoisomerases achieves this task by passing one strand of the DNA through a break in the opposing strand; proteins in the type II subfamily pass a region of duplex strands from the same or a different molecule through a double-stranded gap generated in DNA (1-5). Mammalian cells encode two isozymes of type II enzymes that have highly homologous N-terminal ATPase and central core domains but differ at their C-termini (6). These two isozymes, Topoisomerases IIα (Top2α) and IIβ (Top2β), have almost identical enzymatic properties in vitro (7, 8); however, their expression patterns are dissimilar. Top2α is the main isoform expressed in proliferating cells, shows high expression in S/G2/M phases of the cell cycle, and plays important roles in DNA replication and chromosome condensation/segregation during the cell cycle (9-12).The cellular functions of Top2β are much less well understood. It is expressed in all mammalian cells throughout the cell cycle but is up-regulated robustly when cells reach a postmitotic state of terminal differentiation (13-15). For example, the postmitotic granule cells in the external germinal layer of the developing rat cerebellum show a transition from Top2α to Top2β (14), and blocking Top2β catalytic activity affects the expression of about one third of genes induced during differentiation of rat cerebellar granule neurons (16). Genetic deletion of Top2b in mice causes neural defects including aberrant axonal elongation and branching and perinatal death e...
The Mll gene is a member of the mammalian trithorax group, involved with the antagonistic Polycomb group in epigenetic regulation of homeotic genes. MLL contains a highly conserved SET domain also found in various chromatin proteins. In this study, we report that mice in which this domain was deleted by homologous recombination in ES cells (⌬SET) exhibit skeletal defects and altered transcription of particular Hox genes during development. Chromatin immunoprecipitation and bisulfite sequencing analysis on developing embryo tissues demonstrate that this change in gene expression is associated with a dramatic reduction in histone H3 Lysine 4 monomethylation and DNA methylation defects at the same Hox loci. These results establish in vivo that the major function of Mll is to act at the chromatin level to sustain the expression of selected target Hox genes during embryonic development. These observations provide previously undescribed evidence for the in vivo relationship and SET domain dependence between histone methylation and DNA methylation on MLL target genes during embryonic development.histone methyltransferase ͉ MLL-SET domain ͉ homeotic transformations T he control of cell identity during development is specified, in large part, by the unique expression patterns of multiple homeobox-containing (Hox) genes in specific segments of the embryo (1). The trithorax and polycomb groups (trx-G and PcG) were identified for their role in faithfully maintaining the transcriptional states of these key developmental regulators, providing an epigenetic mechanism of cellular memory (2-4).The gene expression maintenance function of the trxG and PcG proteins is highly conserved. Mixed lineage leukemia (Mll), a human homolog of Drosophila trithorax and a member of the trxG family, was identified first for its involvement in chromosomal translocations associated with lymphoid and myeloid acute leukemia in infants and adults (5, 6). Mll encodes a 3,969-aa nuclear protein with multiple domains, including three AT-hook motifs, a DNA methyltransferase homology domain (DNMT) in the aminoterminal half of the protein, a central zinc finger (PHD) region, and a highly conserved 130-aa carboxyl-terminal SET domain. The MLL protein was shown to be proteolytically processed into two portions (MLL N and MLL C ) with antagonistic transcriptional effector properties, that reassociate and stabilize each other (7-9). The MLL protein is critical for proper regulation of the Hox genes during embryonic development (10). In Mll null mutant mice (MllϪ͞Ϫ), Hox gene expression is correctly initiated but is not sustained as the function of Mll becomes necessary (11), leading to embryonic lethality.It is strongly believed that maintenance of the transcriptional status of target genes by PcG and trxG proteins is achieved through chromatin modifications (12). The structure similarity between some trxG͞PcG and suppressors or enhancers of position effect variegation (PEV) further substantiates this point. One of the most remarkable shared domains within th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.