Pharmacological induction of low deoxyribonucleoside triphosphate (dNTP) levels in virus-infected cells could result in an increased antiviral effectiveness of some selective antiviral nucleoside analogues. That could be exploited as a new combined strategy in the treatment of herpes virus infections. From this point of view the alteration of antiherpes activity of acyclovir (ACV) in combination with mizoribine (N′-[β-d-ribofuranosyl]-5-hydroxyimidazole-4-carboxamide) (MZR), an inhibitor which lowers the intracellular pool of dGTP, was studied. MZR applied alone at non-toxic concentrations had no effect on herpes simplex virus type 1 (HSV-1) replication in human embryonic skin-muscle fibroblasts (HESMF). The combination of MZR and ACV acts synergistically, as measured by the virus yield assay in the above mentioned system. The potentiating effect of MZR on the anti-HSV-1 activity of ACV was reversed by guanosine (Guo). In this case dGTP could be considered as the “key metabolite” responsible for the higher effectivity of the combination of drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.