Modern mass spectrometry is one of the most frequently used methods of quantitative proteomics, enabling determination of the amount of peptides in a sample. Although mass spectrometry is not inherently a quantitative method due to differences in the ionization efficiency of various analytes, the application of isotope-coded labeling allows relative quantification of proteins and proteins. Over the past decade, a new method for derivatization of tryptic peptides using isobaric labels has been proposed. The labels consist of reporter and balanced groups. They have the same molecular weights and chemical properties, but differ in the distribution of stable heavy isotopes. These tags are designed in such a way that during high energy collision induced dissociation (CID) by tandem mass spectrometry, the isobaric tag is fragmented in the specific linker region, yielding reporter ions with different masses. The mass shifts among the reporter groups are compensated by the balancing groups so that the overall mass is the same for all forms of the reagent. Samples of peptides are labeled with the isobaric mass tags in parallel and combined for analysis. Quantification of individual peptides is achieved by comparing the intensity of reporter ions in the tandem mass (MS/MS) spectra. Isobaric markers have found a wide range of potential applications in proteomics. However, the currently available isobaric labeling reagents have some drawbacks, such as high cost of production, insufficient selectivity of the derivatization, and relatively limited enhancement of sensitivity of the analysis. Therefore, efforts have been devoted to the development of new isobaric markers with increased usability. The search for new isobaric markers is focused on developing a more selective method of introducing a tag into a peptide molecule, increasing the multiplexicity of markers, lowering the cost of synthesis, and increasing the sensitivity of measurement by using ionization tags containing quaternary ammonium salts. Here, the trends in the design of new isobaric labeling reagents for quantitative proteomics isobaric derivatization strategies in proteomics are reviewed, with a particular emphasis on isobaric ionization tags. The presented review focused on different types of isobaric reagents used in quantitative proteomics, their chemistry, and advantages offer by their application.
Hydrogens connected to α-carbon (α-C) of amino acid residues are usually resistant to hydrogen-deuterium exchange (HDX) unless reaction conditions promote racemization. Although N-methylglycine (sarcosine) residue has been found in biologically active peptide such as cyclosporine, to the best of our knowledge, the HDX of α-C protons of this residue was not explored yet. Here, we presented a new and efficient methodology of α-C deuteration in sarcosine residues under basic aqueous conditions. The deuterons, introduced at α-C atom, do not undergo back-exchange in acidic aqueous solution. The electrospray ionization-MS and MS/MS experiments on proposed model peptides confirmed the HDX at α-C and revealed the unexpected hydrogen scrambling in sarcosine-containing peptides. Although the observed HDX of α-C protons is only successful in N-acylglycine when the amide possesses a certain degree of alkylation, it offers a new approach to the analysis of sarcosine-containing peptides such as cyclosporine.
No sensitive method for diagnosing early kidney dysfunction in horses has been identified so far. Many studies carried out in humans and small animals show that podocin can be useful to diagnose various kidney diseases, mainly affecting the glomeruli. The aim of this study was to perform a qualitative and quantitative analysis of podocin in urine samples obtained from healthy horses, horses with clinical kidney dysfunction and horses at risk of acute kidney injury. The study objectives aimed to assess: (1) whether the selected podocin tryptic peptide for LC-MS-MRM allows for podocin detection in horse; and (2) whether the species-specific ELISA test makes this detection possible as well;, (3) whether the chosen methods are sensitive enough to detect kidney dysfunction and glomerular injury, (4) whether the results of the tests applying both methods correspond with one another, (5) whether the results correlate with the hematological and biochemical data. The signals that may indicate the presence of trypsin fragments of podocin were found in three healthy horses, all the horses diagnosed with kidney dysfunction and half of the animals at risk for acute kidney injury. The concentration of podocin, diagnosed with the ELISA test was as follows: from 0.19 to 1.2 ng/ml in healthy animals, from 0.19 to 20.0 ng/ml in AKI horses, from 0.29 to 5.71 ng/ml in horses at risk for acute kidney injury. The results of both methods corresponded significantly. Podocin may be a potential biomarker of clinical kidney disease in horses and may be used in the detection of glomerular injury. However, its use is limited by the possibility of physiological podocyturia. LC-MS-MRM seems to be a more sensitive method to evaluate the presence of podocin than the ELISA test, whilst selected tryptic peptides of podocin appear to apply to horses. The ELISA test showed greater effectiveness in excluding the disease than in confirming it.
Derivatization of peptides as quaternary ammonium salts (QAS) is a known method for sensitive detection by electrospray ionization tandem mass spectrometry. Hydrogens at α-carbon atom in N,N,N-trialkylglycine residue can be easily exchanged by deuterons. The exchange reaction is base-catalyzed and is dramatically slow at lower pH. Introduced deuterons are stable in acidic aqueous solution and are not back-exchanged during LC-MS analysis. Increased ionization efficiency, provided by the fixed positive charge on QAS group, as well as the deuterium labeling, enables the analysis of trace amounts of peptides.Electronic supplementary materialThe online version of this article (doi:10.1007/s13361-012-0359-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.