The purpose of this work was to verify the binders available on the Polish market due to their physical features and effectiveness of building permanent active carbon granules. The conducted tests concerned a comparison of sorption properties and strength of activated carbon formed from hard coal depending on the type of binder used. Raw material preparation, granulation, drying and carbonization, as well as activation processes were carried out. The results obtained are presented in the form of tables. Based on the reached results, one of the most important effects in terms of operating conditions is the greatest advantage of the aqueous glycocell solution as a binder.
Activated carbons (ACs) are processed carbon-rich materials with a highly developed inner surface and significant porosity used for different media treatment in municipal and industrial plants. Activated carbon may be manufactured as powdered activated carbon (PAC), gritty activated carbon (in a form of raw angels grains) or granulated activated carbon (GAC). The production of the GAC is based on carbonaceous raw materials and various types of binders. The carbon mass is mixed with the binder and formed in cylindrical granules. The binder’s recognition is in a scientific literature side-topic and still needs wider examination. For many years GAC production have been concentrated on the possibility of using sodium carboxymethylcellulose (SCMC). Therefore, the aim of the research was to develop a new binder, in the available technology of granulated activated carbon production. Such binders were tested such as: tall oil (TO), sugar beet molasses (SBM), sodium carboxymethylcellulose (SCMC), SCMC using a verified technological process and SCMC with the addition of gas tar (GT). The conducted research shows that all the quality requirements were met by activated carbons with SBM as a binder. Additionally they showed very high adsorption properties. The manufacturing process was shorter in comparison to other tested binders and more efficient.
Activated carbon has many applications in the environment, cosmetology, medicine and industry. The surface of each activated carbon can be modified to obtain the desired adsorption properties. Chemical activation can greatly affect the adsorption efficiency, control activity and application of the activated carbon. The aim of the study was to modify the selected activated carbon by chemical and physical methods, while maintaining these parameters so that it could be used in medicine. Powdered activated carbons with higher mechanical strength, large specific surface area and large macro-, meso- and micropore volume were prepared using natural waste wood material. This was followed by the digestion process and the washing of activated carbon. The study results indicate a significant influence of the centrifugal washing of activated carbon on the changes in the ash content and methylene index in the final product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.